• ベストアンサー

漸化式と数列

題名のとおりですが、質問です。よろしくお願いいたします。 問題は 二種類の細胞A Bがあり、各細胞は1分ごとに分裂する。1個のAはA1個、b3個の計4個に分裂し、1個のbはA2個 B2個の計4個に分裂する。初めにそれぞれ一個ずつある。ときN分後のA Bの個数をAn, Bnとする。そのときan, bnを求めよです。 私の解法 A(n+1)=An+2Bn B(n+1)=3An+2Bn An-2/3Bn=1/3(-1)^(n-1) ですが、この後わかりませんでした。 どなたか判る方アドバイスをお願いいたします。

  • goodo
  • お礼率84% (1270/1500)

質問者が選んだベストアンサー

  • ベストアンサー
  • rtz
  • ベストアンサー率48% (97/201)
回答No.1

A(n+1)=A(n)+2B(n) かつ B(n+1)=3A(n)+2B(n) ⇔A(n+1)+B(n+1)=4A(n)+4B(n)=4{A(n)+B(n)} かつ 3A(n+1)-2B(n+1)=-3A(n)+2B(n)=-{3A(n)-2B(n)} ⇔A(n)+B(n)=4^(n-1)・{A(1)+B(1)}=2・4^(n-1) かつ 3A(n)-2B(n)=(-1)^(n-1)・{3A(1)-2B(1)}=(-1)^(n-1) ⇔5A(n)=4・4^(n-1)+(-1)^(n-1)=4^n-(-1)^n かつ 5B(n)=6・4^(n-1)-(-1)^(n-1)=(3/2)・4^n+(-1)^n ⇔A(n)=(1/5)・{4^n-(-1)^n} かつ B(n)=(1/10)・{3・4^n+2・(-1)^n}

goodo
質問者

お礼

ご回答ありがとうございました。 教えていただいたとおりにやると、できました。

関連するQ&A

  • 漸化式の問題を教えてください・・・

    An+1、Bn+1、Anは それぞれAのn+1番目、Bのn+1番目、Aのn+1番目という意味です。(汗 数列{An}、{Bn}が A1=6 B1=1 An+1=An +3Bn Bn+1=2An +2Bn で定められている。 2An +3Bnをnであらわせ。 です。  An+1 + Bn+1 =3An + 5Bn なので 2An + 3Bnを導けません…。ほかに方法があるのでしょうか? 解説お願いします。

  • 漸化式

    漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

  • 高校数学「数列」の問題です

     自然数nに対して、正の整数an,bnを (3+√2)^n=an+bn√2 によって定める。このとき、次の問いに答えよ。 (1) a1,b1とa2,b2を求めよ。 (2) an+1,bn+1をan,bnを用いて表せ。 ―――――― (1) a1=3,b1=1 a2=11,b2=6 (2)の解法を教えて下さい。 よろしくお願いします。

  • 数列

    (1) a(1)=1, a(n+1)=3(an)+5^nのとき、一般項anを求める a(1),a(n+1)=3(an)+5^n ……(1) (1)の両辺を5^(n+1)で割って (an+1)/(5^(n+1)=(3an/(5・5^n))+5n/(5・5^n) bn=an/5とおくと b(n+1)=(3/5)・bn+1/5より変形して b(n+1)-1/2=3/5(bn-1/2) ここで初項と公比をもとめるのですが、どのようにして求めるのですか? そして、このあとどのように求めるのですか? (2) 次の式によって定義されている数列{an}の一般項anを求めるについて a(1)=7, a(n+1)=(1/2)・an+3 初項と公比はどのようにしてもとめるのですか? そして anの形にどのようにしてなるのですか? お願いします

  • 数列を教えて下さい

    a1=3,an+1=2-1/an(n=1,2,3,……)で定められる数列{an}がある。 (1)a2,a3,a4を求めよ。 →自力で解けました。 たぶんa2=5/3,a3=7/5,a4=9/7です。 (2)(1)よりanを推測し、anをnを用いて表せ。また、その推測が正しいことを数学的帰納法で証明せよ。 (3)数列{bn}を、bn=2n+1/2^n・an(n=1,2,3,……)によって定める。S=b1+b2+b3+………+bnとするとき、Sをnを用いて表せ。 解説と解答をお願いします。

  • 数列の極限の証明

    「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)  An^2+2 =―――― (n=1、2・・・)で定める。  2An+1        An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ      An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)   An^2+2 =―――― (n=1、2・・・)で定める。   2An+1          An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ        An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。

  • 漸化式と数列

    数列a1,a2,......anが a1=2, an+1=3an+8(n=1,2,3,......)を満たしている時 (1) 一般項anをnであらわせ (2) 初項から第n項までの和をSnであらわせです 考え方を教えてください ちなみに答えは an=2/3^n -4 Sn=3^n+1  -4n-3です

  • 数学 漸化式 応用

    問題1:数列{an}がa1=1,a2=2,a(n+2)=-a(n+1)+2an(n=1,2,3,…)で定められるとき,次の問いに答えよ。 (1)bn=a(n+1)-an(n=1,2,3,…)とするとき,b(n+1)をbnを用いて表せ。 (2)(3)は(1)が解けたらたぶん解けるので(1)を教えて下さい^^ 問題2:数列{an},{bn}がa1=1,b1=3,a(n+1)=2an+bn,b(n+1)=an+2bnで定められている。このとき{an+bn}の一般項と,{an-bn}の一般項を求めよ。またこれらの結果より,{an}の一般項,{bn}の一般項を求めよ。 よろしくお願いします。 全然ぃぃアイデアが思い浮かびません^^; 普通の漸化式と違っていて… 何をいっているのかもわかりません。 お願いします。