• ベストアンサー
  • すぐに回答を!

三角関数を含む関数の最大値、最小値

0≦θ<2πのとき、関数y=3sin^2θ+2√3*sinθcosθ+cos^2θの最大値、最小値と、そのときのθの値を求めよ。 この問題の解答解説では、0≦θ<2πのとき、-π/6≦sin(2θ-π/6)<4π-π/6を用いて、sin(2θ-π/6)=1のとき、上記の式の範囲において、2θ-π/6=π/2、5π/2。よってθ=π/3、4π/3。 この流れで2θ-π/6をなぜ求められるのか、仕組みがどうしてもわかりません。どなたか解説お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数1186
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • suko22
  • ベストアンサー率69% (325/469)

y=3sin^2θ+2√3*sinθcosθ+cos^2θ =3sin^2θ+√3sin2θ+(1-sin^2θ) =1+2sin^θ+√3sin2θ =1+2(1-cos2θ)/2+√3sin2θ =2+√3sin2θ-cos2θ =2+2sin(2θ-π/6) 最後の変形は正弦と余弦の合成公式を利用 asinθ+bcosθ=√(a^2+b^2)*sin(θ+Φ) 証明、使い方は教科書にのっていると思うので確認してください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます

関連するQ&A

  • 三角関数の最大・最小問題がわかりません

    関数cosx+2√3sin(x+π/3)の0≦x≦π/2での最小値と最大値を求めよ。 と言う問題で 三角関数の合成より 2√3sin(x+π/3)=√3sinx+cosx であるので 与式=√3sinx+4cosx   =√19sin(x+θ) ただし角θは cosθ=√3/√19 sinθ=4/√19 を満たす角である。 というところまで分かりました。 しかしこの続きをどう書けば良いか分かりません。 かなり初歩的な問題であるのは承知しておりますがお助けいただければ幸いです。 また書いた式自体も間違っていたらご指摘ください。 よろしくお願いいたします。

  • 三角関数の最大値・最小値について教えてください

    0≦θ<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。 (1)y=sinθ-cosθ (2)y=3sinθ+√3cosθ という問題なのですが、参考書を見ても解き方がわかりません。。 数学が苦手なので詳しく教えていただけるとうれしいです。

  • 数学 三角関数

    関数 y=3cosθ+4sinθ (0≦θ≦π/2) について、 (1) yのとりうる値の範囲は□≦y≦□である。 (2) yが最大値をとるとき、sinθ=□、cosθ=□である。 (3) yが最大値をとるとき、z=3sin2θ+4cos2θの値は□である。 □の値を教えてください。 途中計算も欲しいです。 よろしくお願いします。

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

本題ではないけど, たぶん解説にこんなことは書いてないと思う. 方針自体はいくつかありそうだけど, 個人的には因数分解したい.

共感・感謝の気持ちを伝えよう!

質問者からの補足

よろしければおすすめの解法を教えていただけませんか?

関連するQ&A

  • 三角関数の最大最小

    -π/3≦θ≦π/3の時、次の関数の最大値、最小値を求めよ。 またその時のθの値を求めよ。 A: y=2sin(2θ+π/2) B: y=1-cos(θ/2-π/6) お願いします( ; ; )

  • 三角関数

    関数 f(x)=8√3cos^2x+ 6sinxcosx+2√3sin^2x について (2)f(x)をsin2xとcos2xを 用いて表せ。 (2)0≦x≦πであるとき,関数f(x)の最大値と最小値,およびそのときのxの値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 三角関数 最大値最小値 合成

    関数y=sin2θ+2(sinθ+cosθ)-1 について、θの範囲は0≦θ<2πである。 k=sinθ+cosθと置くとき、yをkの式で表し kの取りうる値の範囲とyの最大値最小値 その時のθの値を求めよ。 途中までは考えれました。 合っているかは分かりませんが y=k2乗+2k-2 この問題教えてください

  • 三角関数の最大・最小の問題がわかりません

    0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。

  • 三角関数

    3sinθ+4sinθの0≦θ≦πでの最大値は■であり、最小値は■である。また、π/4≦θ≦π/2での最大値は■であり、最小値は■であるという問題で解答に3sinθ+4sinθ=5sin(θ+α) π/4≦θ+α≦π/2よりsin(π/4+α)≧θ+α≧sin(π/2+α)とあるがなぜ符号がさかさまになるんですか??

  • 三角関数

    関数 y=sinθ+cosθ&#65293;2sinθcosθについて (1)t=sinθ+cosθ とするとき、tの値の範囲を求めよ。 (2)sinθcosθを(1)のtを用いて表せ。 (3)関数yの最大値と最小値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 三角関数

    この問題の解答・解説を教えて欲しいです。 0≦X≦2π において f(X)=√3sinX+3cosX g(X)=√2cosX-√6sinX を考える。 f(X),g(X)はそれぞれ f(X)=2√3sin(X+π/3) g(X)=2√2cos(X+π/3) と表せる。 (1)f(X)=0 を満たすXの値は? (2)g(X)<2 を満たすXの値ね範囲は? (3)f(X)+g(X)は最大値□をとるか? ※□は空欄です。 見づらくて申し訳ありませんが、よろしくお願いします。

  • 三角関数の質問です。

    0≦θ≦πのとき、次の関数の最大値と最小値を求めよ。 問 y=√3sinθ-cosθ これの範囲が -π/6≦θ-π/6≦5/6π なのはわかるのですが、これの最大値2(θ=2/3π)、最小値ー1(θ=0) になるのはなぜでしょうか。 単位円を書くのでしょうが、書き方がわかりません。 解答お願いします。

  • 三角関数

    三角関数の問題で解けないものがあります。 教えていただけるとありがたいです。 問題;関数cosX+2√3sin(X+π/3)での最大値と最小値を答えろ。 というのもです。 2√3sin(X+π/3)を加法定理で崩して cosX+2√3sin(X+π/3)=√3sinX+4cosX=√19(X+θ) と、合成まではもっていくことができました。 しかし、ここからどのようにして最大値と最小値を求めたらよいのでしょうか。 解法と最大値と最小値の解を教えていただけるとありがたいです。 ご回答おねがいします。

  • 数学、三角関数

    問題:0≦θ<2πとする。θが、 (cosθ-3/2)^2+(sinθ+√3/2)^2≧4 を満たすとき次の問いに答えよ。 i)θのとり得る値の範囲を求めよ。 回答:π/3≦θ≦4π/3 ii)√3sinθ-cosθのとり得る値の範囲を求めよ。 回答:f(θ)=√3sinθ-cosθとすると、 f(θ)=2sin(θ-π/6) i)から、 π/6≦θ-π/6≦7π/6であるから、・・・(1) -1≦f(θ)≦2 ・・・(2) よって、 -1≦√3sinθ-cosθ≦2 疑問:ii)の回答の、(1)から(2)にするやり方がわかりません。どうして、≦2になるんですか? お願いします。