• ベストアンサー
  • すぐに回答を!

三角関数の最大最小についての問題

関数の最大値と最小値、およびそのときのθの値を求めよ。ただし0≦θ<2πとする。 y=2tan^2θ+4tanθ+5 自分の解答) tanθ=xとおくと、範囲は-1≦x≦1。 y=2x^2+4x+5 y=2(x+1)^2+3 頂点(-1、3) 軸x=-1 よって x=1のとき最大値11 x=-1のとき最小値3 ここでグラフと範囲から最大値・最小値を出したのですが、 答えでは最大値はなしになっていました。 範囲が間違っているのでしょうか、ご指摘宜しくお願いします。

noname#164289

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数2497
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • ferien
  • ベストアンサー率64% (697/1085)

>関数の最大値と最小値、およびそのときのθの値を求めよ。ただし0≦θ<2πとする。 >y=2tan^2θ+4tanθ+5 >答えでは最大値はなしになっていました。 >範囲が間違っているのでしょうか tanθは、0≦θ<2πでは、θ=π/2,3π/2で値が定義されていないので、 tanθが値をもつθの範囲は、0≦θ<π/2,π/2<θ<3π/2,3π/2<θ<2π ……(1) tanθ=xとおくと、このとき、xのとる範囲は任意の実数値(実数全体)です。 (tanθのグラフを見れば分かります。) だから、xの区間の端の値を考えることができないので、最大値はなしです。 y=2x^2+4x+5 y=2(x+1)^2+3 頂点(-1、3) 軸x=-1 よって x=-1のとき最小値3 このとき、tanθ=-1だから、(1)より、θ=3π/4,7π/4

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど、tanθの範囲は取れないのですね。 詳しい回答有難うございました。参考になりました!

関連するQ&A

  • 三角関数の最大値、最小値の問題

    三角関数の問題で分からないことがあるので質問します。 [問] 次の関数の最大値と最小値を求めよ。 y = 2tan^2θ + 4tanθ + 1 [-(π/2) < θ < (π/2)] ---- この問いに対して私はこのように答えました。 関数を変形して y = 2(tanθ+1)^2-1 tanθ = -1、つまりθ=3/4π, 7/4πで最小値-1 tanθ = 1、つまりθ=π/4, 5/4πで最大値7 ---- このように出しましたが、答え合わせをすると間違っていました。 回答集の答え tanθ = tとおくと-(π/2) < θ < π/2の範囲で、tanθは全ての実数値を取り得る。 yをtの式で表すと y = 2t^2 + 4t + 1 = 2(t+1)^2 - 1 故に、yはt = -1をとり、最大値はない。 t = -1となるのは、tanθ = -1から、θ = -(π/4) よってθ = -(π/4)のとき、最小値-1。最大値はない。 ---- 分かっている疑問点を書き出してみました。 イ:そもそも「-(π/2) < θ < π/2」がよく分からない。随って何故tanθが全ての実数値を取り得るのか分からない。 ロ:模範解答だと「tan = -1つまりθ = -(π/4)」となっている。θ=3/4π, 7/4πではないのか。 宜敷御願い致します。

  • 三角関数の最大・最小の問題です

    関数f(x)=sin^2X+asinX+2 (-90°≦X≦90°)について考える。 但し、aは正の定数とする。 (1) a=1のとき、関数f(x)の最大値と最小値を求めよ。 (2) 関数f(x)の最小値が-3となるような定数aの値を求めよ。 このような問題で(1)はよいのですが、(2)についてです。 関数f(x)は頂点の座標が(-a/2,-a^2/4+2)から、場合分けを考え、 答えでは -a/2<-1 , -1≦-a/2<0 の2つのみの場合分けなのです。 私は、-a/2<-1 , -1≦-a/2<1 , -a/2>1 の3つの場合分けを考えたのですが、これではいけないのでしょうか? どこを間違えているのか教えて頂きたくお願申し上げます。

  • 三角関数で

    三角関数で たとえば y=2tan2θ の tanの係数の2 と θの係数の2 はそれぞれ何を表しているのでしょうか? グラフで変化が生じるのはわかるのですが、何を表しているのかが分かりません。 なので、基本のy=tanθの場合 θ軸π/4のとき、y=1となるのはわかるのですが y=2tan2θとかになると θ軸がいくつのときにyの値が何になるのかとかが分かりません。 tanのグラフについて教えてください。

その他の回答 (2)

  • 回答No.2
  • asuncion
  • ベストアンサー率32% (1798/5513)

tanθ=xとおく。 y=2x^2+4x+5 y=2(x+1)^2+3 頂点(-1、3) 軸x=-1 よって x=-1のとき最小値3 ∴θ=3π/4, 7π/4 のとき、最小値3 こういうことではないのでしょうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳しい過程有難うございます。 よく答えを見てみると 「xは任意の実数値をとる」とあったのですが これは範囲がないということなのでしょうか?

  • 回答No.1
  • asuncion
  • ベストアンサー率32% (1798/5513)

>tanθ=xとおくと、範囲は-1≦x≦1。 これは本当でしょうか。sinとかcosとかと混同していませんか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

例題を見ながら解いてたのですが その例題はsinでした。 sinと混同していたみたいです; tanの範囲はどうやって求めるのでしょうか?

関連するQ&A

  • 三角関数の最大最小

    (1)0≦θ<2πとする。最大値最小値を求めよ。    y=cos^2θ+4sinθ-1 対数方程式・不等式 (2)log_4(x+3)=log_4(2x+2) (3)(log_3x)^2-3log_9x-1<0 この解法と答えを教えてください。

  • 数I)関数の最小値の出し方教えて下さい。

    (1)(2)ともに、頂点の出し方までは分かるのですが、 (1)は、グラフの意味が分かりません。 グラフを見ると、(1)は、yの4の上に5が書いてあり、5の点を通ってます。 これは、y軸(直線x=0)で計算して5だから5なんでしょうか? (2)は、答えのt=4で最小値2っていうのが分かりません。 どこから2が出てきたのか教えて下さい。 2というのがさっぱり分かりません。 また、こういう問題は、グラフを書いて答えを導くのなら、 ・頂点の座標 ・x軸との交点の座標 ・y軸との交点の座標 この3つが必要なのでしょうか? 関数y=((x^2)-2x+5)^2-6((x^2)-2x+5)+10について。 (1)t=(x^2)-2x+5としたときの、tのとり得る値の範囲を求めよ。 平方完成で、 t=((x^2)-2x+1-1)+5 t=(x-1)^2+4 頂点は、(1,4) 答え t>=4 (2)yの最小値と、そのxの値を求めよ。 y=((x^2)-2x+5)^2-6((x^2)-2x+5)+10 t=((x^2)-2x+1-1)+5より、 y=t^2-6t+10 平方完成で、 y=(t-3)^2+1 頂点は、(3,1) (1)より、t>=4であるから、t=4で最小値2 このとき(1)より、x=1 以上まとめてx=1のとき、最小値2

  • 三角関数

    y=cosx+cos(x+π/3)の最大・最小およびその時のxの値を求めよ。ただし0≦x≦πとする。  の解法・解答を教えてください。

  • 三角関数の問題です。どうしても解けません。おしえていただけたらありがた

    三角関数の問題です。どうしても解けません。おしえていただけたらありがたいです。 次の方程式を解け、ただし0≦x<2πとする。 (1)(cosx-1)(2cosx-1)=0 (2)(tanx+1)tanx=0 (3)4sin2x=3 わかりやすく説明していただけると助かります。 よろしくお願いいたします。

  • 三角関数の最大・最小問題にて

    三角関数の最大・最小問題にて 三角関数の最大・最小問題にてある解放へのやり方をみたら合成の公式、和積の公式、tanθ/2への置き換えと書いてありました 前者二つはいいのですが、tanθ/2への置き換えの式をほぼ見たことがありません 具体例をあげて欲しいです 宜しくお願いします

  •  二次関数の問題教えてください

     二次関数の問題教えてください (1)2つの放物線Y=2x^2-8x+9、Y=x^2+ax+bの頂点が一致するように定数a、bの値を求めよ (2)二次関数Y=2x^2+4xのグラフをx軸方向に1、Y軸方向に-2だけ平行移動したグラフの方程式を求めよ (3)二次関数Y=2x^2-8x+5のグラフはY=2x^2+4x+7をどのように平行移動したものか (4)Y=-2x^2-4x+1(-2≦x≦1)の最大値、最小値    Y=2x^2+3x+4  (0≦x≦2)の最大値、最小値 2,3,4、は解いてみたのですが答えがあいません。 わかる方求める式も一緒に教えてください

  • 三角関数

    先程も質問させていただいたのですが、まだ三角関数で引っかかるところがあったので質問させてください。 全ての式においてθを求めます。 1)次の式を0°≦θ≦360°の範囲内で答えなさい。 sin^2θ-5sinθcosθ=0 sinやcosに統一すべきなのでしょうが、どのようにして統一したらいいかが判りません。 2)次の式を-π≦θ≦πの範囲内で答えなさい。 tan^3θ-4tan^2θ+tanθ+6=0 こちらは既にtanに統一されているのですが、3乗の処理の仕方や、正直何をすべきだかが判りません。 3)次の式を-180°≦θ≦180°の範囲内で答えなさい。 2cos^3θ=3sinθcosθ この計算は以下までやりました。 2cos^3θ/cosθ=3sinθcosθ/cosθ 2cos^2θ=3sinθ 2(1-sin^2θ)=3sinθ 2-2sin^2θ=3sinθ -2sin^2θ-3sinθ+2=0 2sin^2θ+3sinθ-2=0 (2sinθ?????)(sinθ?????) ここでは因数分解ですよね? 最後の質問です(多くて申しわけありません) 3)次の式を0≦θ≦2πの範囲内で答えなさい。 4tan^3θ-4tan^2θ+tanθ=0 この式も一応挑戦してみました 4tan^3θ-4tan^2θ+tanθ/tanθ=0/tanθ 4tan^2θ-4tan^2θ+tanθ=0 tanθ=0 θ=tan^-1(0) θ=0? このような解答になってしまいました。 初歩的なものもありますがお願いいたします。 一問でも良いので、説明していただけたら幸いです。

  • 三角関数の最大最小 合成の利用について質問です。

    y=sin(θ+5/6π)&#65293;cosθ   この関数の最大最小値を求めよ。ただし 0≦θ≦πとする。 これを計算していくと、&#65293;1≦sin(θ+7/6π)≦1/2 になるらしいのですが、なぜ1/2がでてくるのかわかりません。 全部の解答とともに教えて頂けるとありがたいです。 よろしくお願いします。

  • 三角関数がわかりません

    0≦a≦1とする。関数y=cos^2x+2asinx+bが最大値2,最小値-1/4をとるとき、a,bの値を求めよ。 最大値と最小値を求める問題は解けるのですが、最初にそれが与えられている問題は、どこから手をつけていいのかわかりません。 とりあえずcos^2xを1-sin^2xに直して計算してみたのですが、その先どうすればいいんですか?間違ってますかね…? 教えてください!!

  • 2次関数の最大・最小

    2次関数の最大・最小 aが実数として、a<=x<=a+2で定義される関数f(x)=x^2-2x+3がある。この関数の最大値、最小値をそれぞれM(a),m(a)とするとき、関数b=M(a),b=m(a)のグラフをab平面に(別々に)書け。 最大・最小となる候補を利用 y=d(x-p)^2+qのグラフが下に凸の場合、 ・区間α<=x<=βにおける最小値は、x=pが区間内であれば、頂点のy座標q そうでなければ、区間の端点でのf(α),f(β)のうち小さいほう ・区間α<=x<=βにおける最大値は、区間の端点での値f(α),f(β)のうちの大きいほう である。結局、「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるから、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。 教えてほしいところ 「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるのは理解できます。しかし、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。という部分が理解できません。 何故、たどったものがそれぞれ最大値または最小値のグラフだといえるんですか?? 論理的に教えてください