• ベストアンサー
  • すぐに回答を!

三角関数

関数 f(x)=8√3cos^2x+ 6sinxcosx+2√3sin^2x について (2)f(x)をsin2xとcos2xを 用いて表せ。 (2)0≦x≦πであるとき,関数f(x)の最大値と最小値,およびそのときのxの値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数247
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

前の問題にも言えますが 自力で考えないと問題を少し変えられたらお手上げですよ。 なので少しは考えて自身で解いてみて下さい。 (1) f(x)=8√3cos^2x+6sinxcosx+2√3sin^2x 2倍角の公式を逆に適用、公式sin^2x +cos^2x=1を使って =6√3cos^2x+6sinxcosx+2√3(sin^2x +cos^2x) =3√3(1+cos(2x))+3sin(2x)+2√3 =3√3cos(2x)+3sin(2x)+5√3 (2) f(x)=6sin(2x+(π/3))+5√3 0≦x≦πより π/3≦2x+(π/3)≦2π+(π/3) 最大となるのはsin(2x+(π/3))=1のときなので  2x+(π/3)=π/2 → x=π/12 のときで最大値=f(π/12)=6+5√5 最小となるのは sin(2x+(π/3))=-1のときなので  2x+(π/3)=3π/2 → x=7π/12 のときで最大値=f(7π/12)=-6+5√5 取敢えず解答しておきますが、自分でフォローして自力で解けるようしておかないと失敗するよ。テスト健闘祈る。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりました! 解説ありがとうございます。 自力で解けるよう頑張ります (^-^)

関連するQ&A

  • 三角関数

    関数 y=sinθ+cosθ-2sinθcosθについて (1)t=sinθ+cosθ とするとき、tの値の範囲を求めよ。 (2)sinθcosθを(1)のtを用いて表せ。 (3)関数yの最大値と最小値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 数II 三角関数

    1)関数f(x)=3sin^2x+2sinxcosx-cos^2xの周期と、この関数の最大値を求めよ。 2)0≦θ<2πのとき、不等式cosθ-(3√3*cosθ/2)+4>0を満たすθの値を求めよ。 1)まず周期の求め方がわかりません… cosをsinになおせばいいのかsinをcosになおせばいいのか因数分解すればいいのか… cos^2xを1-sin^2xになおしたところでそこで手詰まりになってまったく求め方に検討もつきません… 2)こちらもcosθ/2を公式にならって変換したところ√がでてきてよくわからない式になりました; (ちなみにcosθ/2=√{(1+cosθ)/2}になりました…) 1と2は全く違う問題ですが同じ単元なため一緒に質問しました。。 どなたか教えてください<(_ _)>

  • 三角関数の問題です

     0≦x≦πのとき、関数f(x)=sin^2x+2√3sinxcosx-cos^2x+1 の最大値とそれを与えるxの値を求めよ。  この問題の解答をお願いします。

  • 三角関数

    こんばんは。 三角関数の問題なのですが、行き詰ってしまいました(・・;) 誰か助けてください(o>_<o) 1.0≦x<2πのとき、次の不等式を解け。  (1)sin2x>sinx    2倍角の公式を使って2sinxcosx-sinx>0に直し、sinx(2cosx-1)>0としたところで、わからなくなってしまいました。              2.0≦x<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。      (1)y=sinθ-cosθ 三角関数の合成を使うということはわかるのですが、どうやって使えばよいのかがわかりません。 よろしくお願いします(×_×)

  • 三角関数の問題について

    数学の問題です。解ける方よろしくお願いします f(θ)=sin3θ-cos3θ+3sin2θ-9(sinθ+cosθ) ただし0<=θ<2π (1)t=sinθ+cosθとおくとき,f(θ)をtで表しなさい (2)f(θ)の最大値と最小値、およびそのときのθの値を求めなさい よろしくお願いします・・・!

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 数IIの三角関数の問題

    数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。

  • 三角関数がわかりません

    0≦a≦1とする。関数y=cos^2x+2asinx+bが最大値2,最小値-1/4をとるとき、a,bの値を求めよ。 最大値と最小値を求める問題は解けるのですが、最初にそれが与えられている問題は、どこから手をつけていいのかわかりません。 とりあえずcos^2xを1-sin^2xに直して計算してみたのですが、その先どうすればいいんですか?間違ってますかね…? 教えてください!!

  • 三角関数。

    こんにちは。 よろしくお願いいたします。 【1】0≦θ≦πのとき、√3sinθ+cosθ=tとおくと、tのとりうる値を求めよ。 これが分からないのですが、解説にはいきなり、 t=2sin(θ+π/6)で・・・ と書いてあるんですが、そこから分かりません。 【2】cos2θ+√3sion2θ=√3 これを合成して2で割ると sin(2x+π/6)=√3/2 が分かりません。

  • 三角関数

    関数y=3sinx^2+6sinxcosx+5cos^xについて xの範囲が0以上2π未満のときのyの最大値、最小値を求めよ。を 教えてくだちい。