• ベストアンサー
  • すぐに回答を!

三角関数 最大値最小値 合成

関数y=sin2θ+2(sinθ+cosθ)-1 について、θの範囲は0≦θ<2πである。 k=sinθ+cosθと置くとき、yをkの式で表し kの取りうる値の範囲とyの最大値最小値 その時のθの値を求めよ。 途中までは考えれました。 合っているかは分かりませんが y=k2乗+2k-2 この問題教えてください

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数892
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • Wis10
  • ベストアンサー率62% (15/24)

こんにちは。  y = k^2 + 2k - 2 までは大丈夫ですよ^^ ここから先は、三角関数の合成を利用して考えます。  k = sinθ + cosθ を変形させると、  k = √2 * sin(θ+(π/4)) と表すことができます。この時、0≦θ<2π より π/4≦θ+π/4≦9π/4 になりますので、  -1 ≦ sin(θ+(π/4)) ≦ 1 つまり k の値の範囲は  -√2 ≦ k ≦ √2 になります。 次に、y の式( y = k^2 + 2k - 2 )を変形させて  y = ( k + 1 )^2 - 3  ( -√2 ≦ k ≦ √2 ) として考えれば、  y の最大値は k = √2 で 2√2  y の最小値は k = -1 で -3 と値が出ます。 以上から、 y が最大値をとるとき、 k = √2 なので  √2 * sin(θ+(π/4)) = √2   ⇒ θ = π/4 y が最小値をとるとき、 k = -1 なので  √2 * sin(θ+(π/4)) = -1   ⇒ θ = π と求めることができますね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます! とてもよく分かりました(o^^o)

関連するQ&A

  • 三角関数の最大・最小の問題がわかりません

    0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。

  • 三角関数の合成

    三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m

  • 三角関数の問題がわかりません・・・

    三角関数の問題がわかりません・・・ 関数f(θ)=6sinθcosθ-8sin^3θcosθ+2cos^2θ-1について、 (1)sin2θ+cos2θ=tとおくとき、tのとりうる値の範囲を求めよ。 (2)f(θ)をtを用いて表せ。 (3)f(θ)の最大値を求めよ。 という問題なのですが、 丸投げな質問ですみません。ですが問題がさっぱり?で解こうにも解けませんでした。 この問題のヒントとして (2)は f(θ)=sin2θ+cos2θ+2sin2θcos2θ と書いてあったのですがこれも?でした。どうか解き方を教えてください。お願いします!

その他の回答 (1)

  • 回答No.1

k=sinθ+cosθ (1) k^2=1+2sinθcosθ=1+sin2θ y=sin2θ+2(sinθ+cosθ)-1=k^2-1+2k-1=k^2+2k-2=(k+1)^2-3 (2) (1)より k=√2sin(θ+π/4) 0≦θ<2πより -√2≦k≦√2  (3) (3)の範囲で(2)のグラフを書けば最大最少がわかる 最大2√2(k=√2) 最小-3(k=-1) この問題はkのグラフ、yのグラフがかけることがポイントです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の最大・最小の問題

    「0≦θ≦π/2において、 (2cosθ-3sinθ)sinθの最大・最小を求めよ」という問題がわかりません。 これは、与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか?  アドバイス願います。

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 三角関数の問題です

       θの範囲が0≦θ≦πであり、x=sinθ+cosθとする。  (1)x=0となるθの値を求めよ。    (2)xの値の範囲を求めよ。    (3)aを実数とするとき、y=asinθ-1/2sin2θ+acosθをa、xで表せ。    (4)yの最小値を求めよ。  この問題の解答をお願いします。

  • 三角関数を含む関数の最大値、最小値

    0≦θ<2πのとき、関数y=3sin^2θ+2√3*sinθcosθ+cos^2θの最大値、最小値と、そのときのθの値を求めよ。 この問題の解答解説では、0≦θ<2πのとき、-π/6≦sin(2θ-π/6)<4π-π/6を用いて、sin(2θ-π/6)=1のとき、上記の式の範囲において、2θ-π/6=π/2、5π/2。よってθ=π/3、4π/3。 この流れで2θ-π/6をなぜ求められるのか、仕組みがどうしてもわかりません。どなたか解説お願いします。

  • 三角関数

    関数 y=sinθ+cosθ&#65293;2sinθcosθについて (1)t=sinθ+cosθ とするとき、tの値の範囲を求めよ。 (2)sinθcosθを(1)のtを用いて表せ。 (3)関数yの最大値と最小値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 三角関数の最大値・最小値について教えてください

    0≦θ<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。 (1)y=sinθ-cosθ (2)y=3sinθ+√3cosθ という問題なのですが、参考書を見ても解き方がわかりません。。 数学が苦手なので詳しく教えていただけるとうれしいです。

  • 三角関数 最大値、最小値

    0°≦θ≦180°とする。 (1) x=sinθ+cosθ のとる範囲を求めよ。 (2) y=2(sin^3θ+cos^3θ)+(sinθ+cosθ)をxを用いてあらわせ。 (3) yの最大値と最小値を求めよ。 という問題です。 (1)-√2≦x≦√2 (2)y=-x^3+4x  と一応なりました。 ここで(3)なのですが、yの最大値最小値はy=-x^3+4xを微分して増減表を書いて出していいのでしょうか? アドバイス宜しくお願いします

  • 三角関数の最大と最小(数学II)

    御世話になっております。 次の問 0≦θ<2πで、関数 y=sin^2θ-cosθの最大と最小を求め、その時のθの値を求めろ。 についてですが、二次関数に置き換えるために、sinやcosを一文字で表す方法を使う事は出来ますか?当方の未熟な考えでは、実際に0から2πの範囲で与式を計算し、yの値を求める方法しか思い付きません。性質を使って、sinかcosのどちらかに統一することが出来るかなぁと思ったのですが… 解き方のヒントだけいただきたいです。宜しくお願い致します。

  • 三角関数について

    関数f(θ)=sin2θ-a(sinθ+cosθ)+2とする。 また、t=sinθ+cosθ,0≦θ≦πとする。 1.f(θ)の最小値m(a)を求めよ 2.f(θ)>0が0≦θ≦πで常に成立するような定数aを求めよ。 解法を教えてください。

  • 三角関数

    関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。