- ベストアンサー
- 困ってます
三角関数 最大値、最小値
0°≦θ≦180°とする。 (1) x=sinθ+cosθ のとる範囲を求めよ。 (2) y=2(sin^3θ+cos^3θ)+(sinθ+cosθ)をxを用いてあらわせ。 (3) yの最大値と最小値を求めよ。 という問題です。 (1)-√2≦x≦√2 (2)y=-x^3+4x と一応なりました。 ここで(3)なのですが、yの最大値最小値はy=-x^3+4xを微分して増減表を書いて出していいのでしょうか? アドバイス宜しくお願いします
- DcSonic
- お礼率22% (63/276)
- 回答数4
- 閲覧数1187
- ありがとう数2
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- Noy
- ベストアンサー率23% (56/235)
いいと思います。 xの範囲に注意して下さい。 ここまで出来ているならば、もはや三角関数の問題ではありません。誘導問題の(1)(2)によって、三次関数の最大最小の基本問題に変身しています。
関連するQ&A
- 三角関数の最大・最小の問題がわかりません
0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。
- ベストアンサー
- 数学・算数
その他の回答 (3)
- 回答No.4
- rinri503
- ベストアンサー率24% (23/95)
もちろん、そうしていいんですが NO1さんも指摘しておられるように xの範囲が間違っているのでは -1≦x≦√2 ではないですか x=√2sin(θ+α) より α=45度 ですから 45≦x≦225 ですから そうするとxのとる範囲は、上記 あとは、あなたは懸念なくその方針でいいと思います
- 回答No.2
- Noy
- ベストアンサー率23% (56/235)
#1です。 0°≦θ≦180° ∴45°≦θ≦225° ですよね。 sinθ+cosθ=√2sin(θ+45°) ってことは、(1)の答えは、 -√2≦x≦√2 ではないのではないかな?単位円を書いてみましょう。最大値は√2であってますが、最小値はどうかな? ここで間違うと、(3)で間違う可能性が出てきます(たまたま結果が正解と同じになることもありますが、本質的には間違ってます。) わからなかったら、また質問してください。
関連するQ&A
- 三角関数の最大・最小の問題
「0≦θ≦π/2において、 (2cosθ-3sinθ)sinθの最大・最小を求めよ」という問題がわかりません。 これは、与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか? アドバイス願います。
- 締切済み
- 数学・算数
- 三角関数 最大値最小値 合成
関数y=sin2θ+2(sinθ+cosθ)-1 について、θの範囲は0≦θ<2πである。 k=sinθ+cosθと置くとき、yをkの式で表し kの取りうる値の範囲とyの最大値最小値 その時のθの値を求めよ。 途中までは考えれました。 合っているかは分かりませんが y=k2乗+2k-2 この問題教えてください
- ベストアンサー
- 数学・算数
- 三角関数を含む関数の最大値、最小値
0≦θ<2πのとき、関数y=3sin^2θ+2√3*sinθcosθ+cos^2θの最大値、最小値と、そのときのθの値を求めよ。 この問題の解答解説では、0≦θ<2πのとき、-π/6≦sin(2θ-π/6)<4π-π/6を用いて、sin(2θ-π/6)=1のとき、上記の式の範囲において、2θ-π/6=π/2、5π/2。よってθ=π/3、4π/3。 この流れで2θ-π/6をなぜ求められるのか、仕組みがどうしてもわかりません。どなたか解説お願いします。
- ベストアンサー
- 数学・算数
- 三角関数の最大値・最小値について教えてください
0≦θ<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。 (1)y=sinθ-cosθ (2)y=3sinθ+√3cosθ という問題なのですが、参考書を見ても解き方がわかりません。。 数学が苦手なので詳しく教えていただけるとうれしいです。
- 締切済み
- 数学・算数
- 三角関数の最大と最小(数学II)
御世話になっております。 次の問 0≦θ<2πで、関数 y=sin^2θ-cosθの最大と最小を求め、その時のθの値を求めろ。 についてですが、二次関数に置き換えるために、sinやcosを一文字で表す方法を使う事は出来ますか?当方の未熟な考えでは、実際に0から2πの範囲で与式を計算し、yの値を求める方法しか思い付きません。性質を使って、sinかcosのどちらかに統一することが出来るかなぁと思ったのですが… 解き方のヒントだけいただきたいです。宜しくお願い致します。
- ベストアンサー
- 数学・算数
- 三角関数
(1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。
- 締切済み
- 数学・算数
質問者からのお礼
Noyさん、rinri503さん 回答ありがとうございました。 指摘どおり単位円を書くときに間違っていました。 本当に助かりました。 ありがとうございました