• ベストアンサー
  • すぐに回答を!

三角関数の最大最小

-π/3≦θ≦π/3の時、次の関数の最大値、最小値を求めよ。 またその時のθの値を求めよ。 A: y=2sin(2θ+π/2) B: y=1-cos(θ/2-π/6) お願いします( ; ; )

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数305
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

A問題 -π/3≦θ≦π/3 → -2π/3≦2θ≦2π/3 → -π/6≦2θ+π/2≦7π/6 だから、y=2sinX(但し、-π/6≦X≦7π/6)と同値である。 故に最大値は2であり、この時X=2θ+π/2=π/2より、θ=0である。 最小値は-1であり、この時X=2θ+π/2=-π/6もしくは7π/6よりθ=±π/3 B問題 同様に、-π/3≦θ≦π/3 → -π/6≦θ/2≦π/6 → -π/3≦θ/2-π/6≦0 だからy=1-cosY(但し、-π/3≦Y≦0)と同値である。 故に、最大値はcosYが最小値を取る場合でありy=1/2。それはY=-π/3でもたらされるから、θ=-π/3と計算される。 逆に最小値はcosYが最大値と取る場合であり、y=0。これはY=0でもたらされるから、θ=π/3となる。 計算間違いがあってもご容赦を。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました! とてもよく分かりました(*^^*)

関連するQ&A

  • 三角関数を含む関数の最大値、最小値

    0≦θ<2πのとき、関数y=3sin^2θ+2√3*sinθcosθ+cos^2θの最大値、最小値と、そのときのθの値を求めよ。 この問題の解答解説では、0≦θ<2πのとき、-π/6≦sin(2θ-π/6)<4π-π/6を用いて、sin(2θ-π/6)=1のとき、上記の式の範囲において、2θ-π/6=π/2、5π/2。よってθ=π/3、4π/3。 この流れで2θ-π/6をなぜ求められるのか、仕組みがどうしてもわかりません。どなたか解説お願いします。

  • 三角関数の最大・最小の問題がわかりません

    0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。

  • 数II 三角関数の最大,最小

    学校で購入した問題集の問題なのですが解説に答えしか載っておらず、とても困っています… 詳しく、途中式や、説明文を書いて解き方教えていただけると、とても嬉しいです。 次の二問なのですが…次の関数の最大値、最小値および、そのときのθの値を求めよ。という問題です。 【1】y=2cosθ&#65293;3(π/3≦θ≦7π/6) ※3分のπと6分の7πです。みにくくてすみません… 【2】y=sin(θ&#65293;π/4) (0≦θ≦5π/4) よろしくお願いします。

その他の回答 (1)

  • 回答No.1

Aについて  素直に2θ+π/2の変域を調べてください。  sinですから、sin(π/2)が最大、sin(-π/2)が最小です。 Bについて  θ/2-π/6 の変域を調べ  cosの符号を考えて見てください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました! よく考えたら出来ますね! 助かりました!

関連するQ&A

  • 三角関数の最大値・最小値について教えてください

    0≦θ<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。 (1)y=sinθ-cosθ (2)y=3sinθ+√3cosθ という問題なのですが、参考書を見ても解き方がわかりません。。 数学が苦手なので詳しく教えていただけるとうれしいです。

  • 三角関数の最大と最小(数学II)

    御世話になっております。 次の問 0≦θ<2πで、関数 y=sin^2θ-cosθの最大と最小を求め、その時のθの値を求めろ。 についてですが、二次関数に置き換えるために、sinやcosを一文字で表す方法を使う事は出来ますか?当方の未熟な考えでは、実際に0から2πの範囲で与式を計算し、yの値を求める方法しか思い付きません。性質を使って、sinかcosのどちらかに統一することが出来るかなぁと思ったのですが… 解き方のヒントだけいただきたいです。宜しくお願い致します。

  • 三角関数の最大・最小の問題

    「0≦θ≦π/2において、 (2cosθ-3sinθ)sinθの最大・最小を求めよ」という問題がわかりません。 これは、与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか?  アドバイス願います。

  • 三角関数 最大値と最小値

    三角関数の問題で、最大値と最小値を求めたいのですが、 y=sin(ⅹ-π/3)+sinⅹ を y=sin(2ⅹ-π/3) と書き直しても問題はないのでしょうか。

  • 三角関数の最大・最小問題がわかりません

    関数cosx+2√3sin(x+π/3)の0≦x≦π/2での最小値と最大値を求めよ。 と言う問題で 三角関数の合成より 2√3sin(x+π/3)=√3sinx+cosx であるので 与式=√3sinx+4cosx   =√19sin(x+θ) ただし角θは cosθ=√3/√19 sinθ=4/√19 を満たす角である。 というところまで分かりました。 しかしこの続きをどう書けば良いか分かりません。 かなり初歩的な問題であるのは承知しておりますがお助けいただければ幸いです。 また書いた式自体も間違っていたらご指摘ください。 よろしくお願いいたします。

  • 三角関数 最大値最小値 合成

    関数y=sin2θ+2(sinθ+cosθ)-1 について、θの範囲は0≦θ<2πである。 k=sinθ+cosθと置くとき、yをkの式で表し kの取りうる値の範囲とyの最大値最小値 その時のθの値を求めよ。 途中までは考えれました。 合っているかは分かりませんが y=k2乗+2k-2 この問題教えてください

  • 三角関数 最大値、最小値

    0°≦θ≦180°とする。 (1) x=sinθ+cosθ のとる範囲を求めよ。 (2) y=2(sin^3θ+cos^3θ)+(sinθ+cosθ)をxを用いてあらわせ。 (3) yの最大値と最小値を求めよ。 という問題です。 (1)-√2≦x≦√2 (2)y=-x^3+4x  と一応なりました。 ここで(3)なのですが、yの最大値最小値はy=-x^3+4xを微分して増減表を書いて出していいのでしょうか? アドバイス宜しくお願いします

  • 至急 三角関数の最大、最小

    馬鹿でもわかりやすく お願いします! 至急 関数f(x )=(1&#65293;√3)sin ^2+2sin x cosx++(1+√3)cos^2 について考えよう。 ただし、&#65293;2ぶんのπ≦x≦2ぶんのπとする。 f(x)=「 」sin (2x+「 」ぶんのπ)+「 」となるから、f(x)は x=「 」ぶんのπ のとき最大値「 」 X=「 」ぶんのπのとき最小値「 」 をとる。 また、f(x)=2を満たすxの値は x=&#65293;「 」ぶんのπ、「 」ぶんのπである。 「 」に数字が入ります とてもくわしく回答してくださると 助かります お願いします。

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 三角関数

    (1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。