• 締切済み
  • 困ってます

三角関数

(1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数619
  • ありがとう数2

みんなの回答

  • 回答No.2

こんばんは、inaba-77さん。 ちょっと気になったのですが 質問だけしておいて、その後なんらお礼やコメントすら 記さないのは、どうかと思います。 最大値・最小値について。 http://oshiete1.goo.ne.jp/kotaeru.php3?q=1115278 教えて下さい。 http://oshiete1.goo.ne.jp/kotaeru.php3?q=1113912 学校の勉強も、たいそうですが マナーやネチケット(インターネットのエチケット)も この際(良い機会かと思い)勉強なさっては、いかがでしょうか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数について質問

    こんばんは。 三角関数について質問があります。 0≦α<360°のとき、関数y=cos2θ+2sinθの最大値と最小値を求めよう。 この問題については cosθ=1-2sin^2θを代入し、 =-2(x-(1)/2)^2+3/2 から最大値、最小値を求められます。 上記のようなやり方で三角関数をつかわず y=sinθ+√3cosθ や y=sinθ+cosθ を最大値、最小値をもとめられるでしょうか? (問題集では三角関数を使い解いています) 不可能な場合、どうしてだめかも教えてください。 よろしくお願いします。

  • 三角関数の問題です

    αを実数とする。0≦θ≦πのとき、関数y=αcosθ-2sin^2θの最大値、最小値をそれぞれM(α)、m(α)とする。 (1)M(α)、m(α)を求めよ。 という問題で、 y=αcosθ-2sin^2θ が y=2(cosθ+α/4)^2-α^2/8-2 (-1≦cosθ≦1) となるとは分かるのですが、このあとの場合分けの仕方が分からないので教えてほしいです!お願いします。

  • 三角関数

    関数 y=sinθ+cosθ&#65293;2sinθcosθについて (1)t=sinθ+cosθ とするとき、tの値の範囲を求めよ。 (2)sinθcosθを(1)のtを用いて表せ。 (3)関数yの最大値と最小値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 回答No.1
  • hinebot
  • ベストアンサー率37% (1123/2963)

(1)(2)(3)とも式変形はあってます。 もっとも、(2)は途中からθが抜けてますけどね。 (2)は y=8(cos^2θ-sin^2θ)+1 =8{cos^2θ-(1-cos^2θ)}+1 =8(2cos^2θ-1}+1 =16cos^2θ-7 とすることもできます。 やり方は sinθ=s, cosθ=c 等とおいたときに、yがsやcの2次関数になっていますから、あとは2次関数の最大・最小の問題と同じです。 ただし、-1≦s≦1 ,-1≦c≦1 という条件があることに注意します。 yの最大・最小とそのときのs,cの値が判れば、あとはそこからθに戻すだけです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数です…;

    この問題の解き方を 教えてください。 問 次の関数の最大値・最小値を求めよ。 (1) y=cos2θ&#65293;2sinθ (0≦θ<2π) (2) y=sinθ&#65293;√3cosθ+1 (0≦θ≦π) よろしくお願いします(;人;)

  • 数IIの三角関数の問題

    数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。

  • 三角関数の問題

    高2です。 11月進研模試の三角関数の問題で解けないのがあります。 f(x)=cos2θ-cosθで範囲が0≦θ<2πのとき {1}f(x)をcosθであらわし、そのときの最小値をもとめよ {2}f(x)が最小値のときのθをaとし、 sin{θ+a}×cos{θ+a}の最大値を求めよ {1}については一応解けましたが、{2}はさっぱりです。 お願いします。

  • 三角関数がわかりません

    0≦a≦1とする。関数y=cos^2x+2asinx+bが最大値2,最小値-1/4をとるとき、a,bの値を求めよ。 最大値と最小値を求める問題は解けるのですが、最初にそれが与えられている問題は、どこから手をつけていいのかわかりません。 とりあえずcos^2xを1-sin^2xに直して計算してみたのですが、その先どうすればいいんですか?間違ってますかね…? 教えてください!!

  • 三角関数

    関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。

  • 三角関数 

    先程は失礼しました。 三角関数の最大値と最小値を求める問題で、 sin^2ⅹ+3cos^2ⅹ は 1+2cos^2ⅹ と変形しても問題はないでしょうか。

  • 三角関数の最大値を求める問題

    長軸の長さがa、短軸の長さがbで中心の座標が(m, n)の楕円周上の点のうち、 原点までの長さが最大となる点Pを求めよという問題で、 楕円周上の点Pを(x, y)=(acos@+m, bsin@+n)と置いたとき、 原点までの距離Lはsqrt((acos@+m)^2+(bsin@+n)^2)となるので、 L^2が最大となる@を求めればよいと思って、展開してsinにそろえると、 L^2=(a^2)(cos@)^2+2amcos@+m^2+(b^2)(sin@)^2+2bnsin@+n^2 =(a^2)(1-(sin@)^2)+2amcos@+m^2+(b^2)(sin@)^2+2bnsin@+n^2 =(b^2-a^2)(sin@)^2+2bnsin@+2amcos@+a^2+m^2+n^2 =(b^2-a^2)(sin@)^2+2sqrt((bn)^2+(am)^2)sin(@+arctan(am/bn))+a^2+m^2+n^2 となり、関数の中に位相の異なるsinが出てきてしまって2次方程式として最大値を求めることができません。 @の範囲は、楕円を考えているので0≦@<2πになるかと思います。 (sin@)^2を次数下げした場合はcos2@が出てきてしまい、三角関数の合成をcosで行っても、 角速度と位相の異なるcosの式になってしまうので、同様に解けません。 どなたか解法をご教授いただけませんでしょうか。 よろしくお願いいたします。

  • 三角関数

    三角関数の問題について教えていただきたいです途中までは出来ました 1) y=cos2Θ+sinΘ(0≦Θ<2π) でsinΘ=tとすると y=-2t^2+t+1となり、yの最大値は9/8で最小値は-2 2) aを実数とし、Θに関する方程式cos2Θ+sinΘ=a…(1)を考えるただし 0≦Θ<2π (1)が解を二つ持つ時のaの範囲を求めよ 上の問題なんですが何処から手をつけたらよいかわかりません ご教授おねがいします。

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 三角関数

    y=-2sinθ-2cosθで0≦θ≦90°の範囲における最大値と最小値を求め、そのときのθの値も求めよという問題です。 y=-2sinθ-2cosθを合成すると2√2sin(θ+225°)と書いてあったのですが、このとき2√2sin(θ-135°)と変形してみると最小値のときのθ値が合わないのですが、2√2sin(θ-135°)と変形してはいけないのはなぜですか?