• ベストアンサー
  • すぐに回答を!

三角関数です…;

この問題の解き方を 教えてください。 問 次の関数の最大値・最小値を求めよ。 (1) y=cos2θ-2sinθ (0≦θ<2π) (2) y=sinθ-√3cosθ+1 (0≦θ≦π) よろしくお願いします(;人;)

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数255
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

(1) まず2θを2倍角の公式をつかってθにします。 y = cos2θ - 2sinθ = 1 - 2sin^2θ - 2sinθ = -2(sinθ + 1/2)^2 + 3/2 0 ≦ θ < 2πだから -1 ≦ sinθ ≦ 1なので y = -2(sinθ + 1/2)^2 + 3/2は 最大値 3/2 最小値 -3 (2) 三角関数の合成を使います。 y = sinθ-√3cosθ+1 = 2sin(θ - π/3) + 1 0 ≦ θ ≦ π なので -π/3 ≦ θ - π/3 ≦ 2π/3 だから -√3/2 ≦ sin(θ - π/3) ≦ 1 よって y = 2sin(θ - π/3) + 1は 最大値 3 最小値 1 - √3

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます<(_ _*)> 助かりました(*^▽^*)

関連するQ&A

  • 三角関数

    (1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。

  • 三角関数の最大と最小(数学II)

    御世話になっております。 次の問 0≦θ<2πで、関数 y=sin^2θ-cosθの最大と最小を求め、その時のθの値を求めろ。 についてですが、二次関数に置き換えるために、sinやcosを一文字で表す方法を使う事は出来ますか?当方の未熟な考えでは、実際に0から2πの範囲で与式を計算し、yの値を求める方法しか思い付きません。性質を使って、sinかcosのどちらかに統一することが出来るかなぁと思ったのですが… 解き方のヒントだけいただきたいです。宜しくお願い致します。

  • 三角関数の最大値・最小値について教えてください

    0≦θ<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。 (1)y=sinθ-cosθ (2)y=3sinθ+√3cosθ という問題なのですが、参考書を見ても解き方がわかりません。。 数学が苦手なので詳しく教えていただけるとうれしいです。

  • 三角関数について質問

    こんばんは。 三角関数について質問があります。 0≦α<360°のとき、関数y=cos2θ+2sinθの最大値と最小値を求めよう。 この問題については cosθ=1-2sin^2θを代入し、 =-2(x-(1)/2)^2+3/2 から最大値、最小値を求められます。 上記のようなやり方で三角関数をつかわず y=sinθ+√3cosθ や y=sinθ+cosθ を最大値、最小値をもとめられるでしょうか? (問題集では三角関数を使い解いています) 不可能な場合、どうしてだめかも教えてください。 よろしくお願いします。

  • 三角関数の問題です

    αを実数とする。0≦θ≦πのとき、関数y=αcosθ-2sin^2θの最大値、最小値をそれぞれM(α)、m(α)とする。 (1)M(α)、m(α)を求めよ。 という問題で、 y=αcosθ-2sin^2θ が y=2(cosθ+α/4)^2-α^2/8-2 (-1≦cosθ≦1) となるとは分かるのですが、このあとの場合分けの仕方が分からないので教えてほしいです!お願いします。

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 三角関数。。。

    三角関数が分かりません。 この問題の解き方を教えて下さい! 0°≦θ≦150°とする。 関数 f(θ)=cos2θ-2cosθは、θ=(  )°のとき最小値(  )をとる。 また、最大値はθ=(  )°のとき(  )である。

  • 三角関数

    関数 y=sinθ+cosθ-2sinθcosθについて (1)t=sinθ+cosθ とするとき、tの値の範囲を求めよ。 (2)sinθcosθを(1)のtを用いて表せ。 (3)関数yの最大値と最小値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 数学の三角関数の加法定理についてです。解き方もどの公式を使えばいいのか

    数学の三角関数の加法定理についてです。解き方もどの公式を使えばいいのかも分からなく全く手が出ません。助けてください。 関数y=sin2乗x-4sinxcosx+5cos2乗xについて、次の問に答えよ。ただし、0≦x<2πとする。 (1)yをsin2x,cos2xで表せ。 (2)yの最大値と最小値を求めよ。また、そのときのxの値を答えよ。 よろしくお願いします。

  • 三角関数

    こんばんは。 三角関数の問題なのですが、行き詰ってしまいました(・・;) 誰か助けてください(o>_<o) 1.0≦x<2πのとき、次の不等式を解け。  (1)sin2x>sinx    2倍角の公式を使って2sinxcosx-sinx>0に直し、sinx(2cosx-1)>0としたところで、わからなくなってしまいました。              2.0≦x<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。      (1)y=sinθ-cosθ 三角関数の合成を使うということはわかるのですが、どうやって使えばよいのかがわかりません。 よろしくお願いします(×_×)

専門家に質問してみよう