• 締切済み
  • 困ってます

数II 三角関数 質問です

0≦θ≦2πのとき、関数 y=4sinθcosθ+3sin^2θ の最大値、最小値を求めよ 2sinθに変形したりしてみましたが分かりませんでした

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数363
  • ありがとう数0

みんなの回答

  • 回答No.4

いずれにしても、sin^2θ=(1-cos2θ)/2 は必要になる。 4sinθcosθ=2*sin2θだから、これら2つを代入すると、2y=4*sin2θ+3-3*cos2θ cos2θ=b、sin2θ=a とすると、a^2+b^1=1 ‥‥(1) のとき 3b-4a+2y-3=0 ‥‥(2) のyの値域を定める事になる。 (1)をab平面上に図示すると、原点を中心とする半径1の円周。 (2)は直線だから、(1)と(2)が交点を持つ条件を求める事になるが、原点と直線(1)との距離が 半径の1以下であると良い。 つまり(点と直線との距離の公式を使って)|2y-3|/5≦1 → -1≦y≦4。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数

    関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。

  • 数IIの三角関数の問題

    数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。

  • 三角関数

    3sinθ+4sinθの0≦θ≦πでの最大値は■であり、最小値は■である。また、π/4≦θ≦π/2での最大値は■であり、最小値は■であるという問題で解答に3sinθ+4sinθ=5sin(θ+α) π/4≦θ+α≦π/2よりsin(π/4+α)≧θ+α≧sin(π/2+α)とあるがなぜ符号がさかさまになるんですか??

  • 回答No.3
  • eco1900
  • ベストアンサー率66% (59/89)

では、【補足】しておきますね^^。 (前回では・・・) 【質問】 0≦θ≦2πのとき、関数 y=4sinθcosθ+3sin^2θ の最大値、最小値を求めよ。 ・恐らく、4sinθcosθ=2(2sinθcosθ)=2sin2θとしたと思います。  →せっかくなので、cosの倍角公式も駆使しましょう^^。  cos2θ =cos^2θ-sin^2θ       =2cos^2θ-1       =1-sin^2θ ←これが使えそうですね^^。   ・・・ということで、「sin^2θ=(1-cos2θ)/2」を使うと・・・y=2sin2θ+3(1-cos2θ)/2    ・・・この続きから、再挑戦を祈っています^^v。 (・・・と以上が前回まではこんな感じでした)  ここからは、式そのものの形も見てすぐ分かるように図にしておきますね^^A。 *図が見づらい時は、「右クリック→拡大」してからご覧くださいね^^。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • gohtraw
  • ベストアンサー率54% (1630/2966)

4sinΘcosΘ+3sin^2Θ=(2sinΘ+cosΘ)^2-sin^2Θ-cos^2Θ                 =(2sinΘ+cosΘ)^2-1 また、 4sinΘcosΘ+3sin^2Θ=-(sinΘー2cosΘ)^2+4sin^2Θ+4cos^2Θ                 =-(sinΘー2cosΘ)^2+4 です。カッコの中がゼロになるときがそれぞれ最小値、および最大値です。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • eco1900
  • ベストアンサー率66% (59/89)

【質問】 0≦θ≦2πのとき、関数 y=4sinθcosθ+3sin^2θ の最大値、最小値を求めよ。 ・恐らく、4sinθcosθ=2(2sinθcosθ)=2sin2θとしたと思います。  →せっかくなので、cosの倍角公式も駆使しましょう^^。  cos2θ =cos^2θ-sin^2θ       =2cos^2θ-1       =1-sin^2θ ←これが使えそうですね^^。   ・・・ということで、「sin^2θ=(1-cos2θ)/2」を使うと・・・y=2sin2θ+3(1-cos2θ)/2    ・・・この続きから、再挑戦を祈っています^^v。  ちなみに、答えとしては「最大値4、最小値-1」となるようです。

共感・感謝の気持ちを伝えよう!

質問者からの補足

考えましたがこの式の次が思い浮かびません…

関連するQ&A

  • 数学 三角関数

    関数 y=3cosθ+4sinθ (0≦θ≦π/2) について、 (1) yのとりうる値の範囲は□≦y≦□である。 (2) yが最大値をとるとき、sinθ=□、cosθ=□である。 (3) yが最大値をとるとき、z=3sin2θ+4cos2θの値は□である。 □の値を教えてください。 途中計算も欲しいです。 よろしくお願いします。

  • 三角関数の問題について

    数学の問題です。解ける方よろしくお願いします f(θ)=sin3θ-cos3θ+3sin2θ-9(sinθ+cosθ) ただし0<=θ<2π (1)t=sinθ+cosθとおくとき,f(θ)をtで表しなさい (2)f(θ)の最大値と最小値、およびそのときのθの値を求めなさい よろしくお願いします・・・!

  • 三角関数

    3cos^2θ+4sinθcosθ+3sinθ+6cosθ+3 t=sinθ+2cosθ とおいてyをtを用いて表せ という問題なんですが。 3sinθ+6cosθ=2tというのはわかるんですが前の3cos^2θ+4sinθcosθガどうやってやればいいのか解りません。 どうか教えてくださいお願いしますm(__)m

  • 三角関数

    三角関数の問題で解けないものがあります。 教えていただけるとありがたいです。 問題;関数cosX+2√3sin(X+π/3)での最大値と最小値を答えろ。 というのもです。 2√3sin(X+π/3)を加法定理で崩して cosX+2√3sin(X+π/3)=√3sinX+4cosX=√19(X+θ) と、合成まではもっていくことができました。 しかし、ここからどのようにして最大値と最小値を求めたらよいのでしょうか。 解法と最大値と最小値の解を教えていただけるとありがたいです。 ご回答おねがいします。

  • 数II 三角関数

    1)関数f(x)=3sin^2x+2sinxcosx-cos^2xの周期と、この関数の最大値を求めよ。 2)0≦θ<2πのとき、不等式cosθ-(3√3*cosθ/2)+4>0を満たすθの値を求めよ。 1)まず周期の求め方がわかりません… cosをsinになおせばいいのかsinをcosになおせばいいのか因数分解すればいいのか… cos^2xを1-sin^2xになおしたところでそこで手詰まりになってまったく求め方に検討もつきません… 2)こちらもcosθ/2を公式にならって変換したところ√がでてきてよくわからない式になりました; (ちなみにcosθ/2=√{(1+cosθ)/2}になりました…) 1と2は全く違う問題ですが同じ単元なため一緒に質問しました。。 どなたか教えてください<(_ _)>

  • 三角関数

    (1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。

  • 三角関数

    関数 f(x)=8√3cos^2x+ 6sinxcosx+2√3sin^2x について (2)f(x)をsin2xとcos2xを 用いて表せ。 (2)0≦x≦πであるとき,関数f(x)の最大値と最小値,およびそのときのxの値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 三角関数について質問

    こんばんは。 三角関数について質問があります。 0≦α<360°のとき、関数y=cos2θ+2sinθの最大値と最小値を求めよう。 この問題については cosθ=1-2sin^2θを代入し、 =-2(x-(1)/2)^2+3/2 から最大値、最小値を求められます。 上記のようなやり方で三角関数をつかわず y=sinθ+√3cosθ や y=sinθ+cosθ を最大値、最小値をもとめられるでしょうか? (問題集では三角関数を使い解いています) 不可能な場合、どうしてだめかも教えてください。 よろしくお願いします。

  • 三角関数

    y=-2sinθ-2cosθで0≦θ≦90°の範囲における最大値と最小値を求め、そのときのθの値も求めよという問題です。 y=-2sinθ-2cosθを合成すると2√2sin(θ+225°)と書いてあったのですが、このとき2√2sin(θ-135°)と変形してみると最小値のときのθ値が合わないのですが、2√2sin(θ-135°)と変形してはいけないのはなぜですか?

  • 三角関数の最大値・最小値について教えてください

    0≦θ<2πのとき、次の関数の最大値と最小値、およびそのときのθの値を求めよ。 (1)y=sinθ-cosθ (2)y=3sinθ+√3cosθ という問題なのですが、参考書を見ても解き方がわかりません。。 数学が苦手なので詳しく教えていただけるとうれしいです。