• 締切済み
  • すぐに回答を!

三角関数の問題です

αを実数とする。0≦θ≦πのとき、関数y=αcosθ-2sin^2θの最大値、最小値をそれぞれM(α)、m(α)とする。 (1)M(α)、m(α)を求めよ。 という問題で、 y=αcosθ-2sin^2θ が y=2(cosθ+α/4)^2-α^2/8-2 (-1≦cosθ≦1) となるとは分かるのですが、このあとの場合分けの仕方が分からないので教えてほしいです!お願いします。

noname#92235
noname#92235

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数28
  • ありがとう数1

みんなの回答

  • 回答No.1
  • take_5
  • ベストアンサー率30% (149/488)

cosθ=xとすると、y=2(x+α/4)^2-α^2/8-2 (|x|≦1)となり、単なる2次関数になる。 従って、軸が -α/4であるから (1)-α/4≧1 (2)0≦-α/4≦1 (3)-1≦-α/4≦0 (4)-α/4≦-1 の4つの場合わけになる。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数

    (1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。

  • 三角関数

    三角関数の問題について教えていただきたいです途中までは出来ました 1) y=cos2Θ+sinΘ(0≦Θ<2π) でsinΘ=tとすると y=-2t^2+t+1となり、yの最大値は9/8で最小値は-2 2) aを実数とし、Θに関する方程式cos2Θ+sinΘ=a…(1)を考えるただし 0≦Θ<2π (1)が解を二つ持つ時のaの範囲を求めよ 上の問題なんですが何処から手をつけたらよいかわかりません ご教授おねがいします。

  • 三角関数について質問

    こんばんは。 三角関数について質問があります。 0≦α<360°のとき、関数y=cos2θ+2sinθの最大値と最小値を求めよう。 この問題については cosθ=1-2sin^2θを代入し、 =-2(x-(1)/2)^2+3/2 から最大値、最小値を求められます。 上記のようなやり方で三角関数をつかわず y=sinθ+√3cosθ や y=sinθ+cosθ を最大値、最小値をもとめられるでしょうか? (問題集では三角関数を使い解いています) 不可能な場合、どうしてだめかも教えてください。 よろしくお願いします。

  • 三角関数

    関数 y=sinθ+cosθ-2sinθcosθについて (1)t=sinθ+cosθ とするとき、tの値の範囲を求めよ。 (2)sinθcosθを(1)のtを用いて表せ。 (3)関数yの最大値と最小値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 三角関数です…;

    この問題の解き方を 教えてください。 問 次の関数の最大値・最小値を求めよ。 (1) y=cos2θ-2sinθ (0≦θ<2π) (2) y=sinθ-√3cosθ+1 (0≦θ≦π) よろしくお願いします(;人;)

  • 数IIの三角関数の問題

    数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。

  • 三角関数の問題

    高2です。 11月進研模試の三角関数の問題で解けないのがあります。 f(x)=cos2θ-cosθで範囲が0≦θ<2πのとき {1}f(x)をcosθであらわし、そのときの最小値をもとめよ {2}f(x)が最小値のときのθをaとし、 sin{θ+a}×cos{θ+a}の最大値を求めよ {1}については一応解けましたが、{2}はさっぱりです。 お願いします。

  • 三角関数がわかりません

    0≦a≦1とする。関数y=cos^2x+2asinx+bが最大値2,最小値-1/4をとるとき、a,bの値を求めよ。 最大値と最小値を求める問題は解けるのですが、最初にそれが与えられている問題は、どこから手をつけていいのかわかりません。 とりあえずcos^2xを1-sin^2xに直して計算してみたのですが、その先どうすればいいんですか?間違ってますかね…? 教えてください!!

  • 三角関数

    関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。

  • 三角関数 

    先程は失礼しました。 三角関数の最大値と最小値を求める問題で、 sin^2ⅹ+3cos^2ⅹ は 1+2cos^2ⅹ と変形しても問題はないでしょうか。

専門家に質問してみよう