• 締切済み
  • すぐに回答を!

三角関数の最大・最小の問題

「0≦θ≦π/2において、 (2cosθ-3sinθ)sinθの最大・最小を求めよ」という問題がわかりません。 これは、与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか?  アドバイス願います。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数313
  • ありがとう数2

みんなの回答

  • 回答No.2

>与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか?  それでかまわないが、合成した後は0≦2θ≦πで考える事になるが、ちょっと考えにくいところがある。 従って、sin2θ=x、cos2θ=yとすると、x^2+y^2=1、0≦x≦1、|y|≦1 ‥‥(1) の範囲で(つまり、単位円の右半分で)、直線:3y=-2x+(2k+3)‥‥(2) の最大値と最小値を考える事になる。 この直線は、傾きが -2/3である事に注意すると、(2)が(1)に接する時に最大、点(0、-1)を通る時に最小になる。 具体的な計算は自分でやって。最大値の値は、点と直線との距離の公式を使えば簡単だろう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 なるほど、「図形と方程式」の内容で解くことも可能なんですね。 これから計算してみようと思います。参考になりました。

関連するQ&A

  • 三角関数の最大・最小の問題がわかりません

    0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 三角関数の合成

    三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m

  • 回答No.1

>これは、与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか?  これで出来ると思いますが…

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 この方針で合ってるんですね。

関連するQ&A

  • 三角関数

    関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。

  • 三角関数

    ABCと長方形PQRCを考える。ただし、点Aは辺PQ上(頂点を除く)にあり、点Bは辺QR上(頂点を除く)にあるものとし、∠BAQ=θ(0<θ<π/3)とする。 AQ=cosθ AP=√3sinθ CP=√3cosθ 長方形の面積をSとすると。 S=3/2sin2θ+√(3)/2cos2θ+√(3)/2 さらに三角関数の合成を行うと S=√3sin(2θ+π/6)+√(3)/2と変形できる。 0<θ<π/3のとき π/6<2θ+π/6<5π/6だから 2θ+π/6=π/2=θ=π/6 のとき最大値 S=√3・sinπ/2+√3/2 =√3+√3/2 =(3√3)/2 なぜ 2θ+π/6=π/2=θ=π/6 のとき最大値と分かるのでしょうか。

  • 三角関数

    よろしくお願いいたします。 0 <θ<π/2とする。 sinθ-cosθ=1/2のとき、sin2θ=3/4, さてtanθ=? という問題です。 解答は、 2sinθcosθ=3/4の両辺をcosθ^2で割って整理すると 2tanθ=1/cosθ^2=1+tanθ^2であるからX=tanθとおくと、 3X^2-8X+3=0よりX=4±√7・・・※ ここで 0 <θ<π/2かつsinθ-cosθ=1/2>0よりX-1>0であるから、 X=4+√7 ※までは理解できたのですが、そこからしぼりこむところが疑問です。解答はここまでしか書いていないのですが、そんな単純なことなのでしょうか。どうしてX-1>0といえるのでしょうか。 X=4-√7はだいたい4 &#8211; 2.6くらいでしょうか。sinθ-cosθ=√2sin θ(θ-π/4)=1/2など変形してみたのですが、それ以上前に進めませんでした。勉強不足ですが、どなたかアドバイスをお願いいたします。

  • 三角関数

    y=-2sinθ-2cosθで0≦θ≦90°の範囲における最大値と最小値を求め、そのときのθの値も求めよという問題です。 y=-2sinθ-2cosθを合成すると2√2sin(θ+225°)と書いてあったのですが、このとき2√2sin(θ-135°)と変形してみると最小値のときのθ値が合わないのですが、2√2sin(θ-135°)と変形してはいけないのはなぜですか?

  • 三角関数 最大値最小値 合成

    関数y=sin2θ+2(sinθ+cosθ)-1 について、θの範囲は0≦θ<2πである。 k=sinθ+cosθと置くとき、yをkの式で表し kの取りうる値の範囲とyの最大値最小値 その時のθの値を求めよ。 途中までは考えれました。 合っているかは分かりませんが y=k2乗+2k-2 この問題教えてください

  • 三角関数の最大最小

    -π/3≦θ≦π/3の時、次の関数の最大値、最小値を求めよ。 またその時のθの値を求めよ。 A: y=2sin(2θ+π/2) B: y=1-cos(θ/2-π/6) お願いします( ; ; )

  • 三角関数の応用の問題なんですが

    θが-π/3≦θ≦2/3πの範囲で変化するとき3sinθ+2cos2θの最大値と最小値を求めよ。(cos,sinの後の小さい数字は2乗の意味です。) という問題なんですが、自分で一応解いてみたんですが、 わからないので教えて下さい。お願いします。一応自分で途中まで解いたやつも↓に書きました。 sinθ=tとおく。 3sinθ+2cos2θ=3sinθ+2(1-sin2θ)                             =-2sin2θ+3sinθ+2 ここまでしかわかりませんでした・・・。

  • 三角関数

    (cos2x+sin2x+1)/cos2xsin2x 0<x<π/4の最小値についてですが、図形的に2x=π/4の時だろうというのはわかるのですが、微分しないで求まらないでしょうか?自分はtanxのみの式にしてもうまくいきませんでした。よろしくお願いします。

  • 三角関数を含む関数の最大値、最小値

    0≦θ<2πのとき、関数y=3sin^2θ+2√3*sinθcosθ+cos^2θの最大値、最小値と、そのときのθの値を求めよ。 この問題の解答解説では、0≦θ<2πのとき、-π/6≦sin(2θ-π/6)<4π-π/6を用いて、sin(2θ-π/6)=1のとき、上記の式の範囲において、2θ-π/6=π/2、5π/2。よってθ=π/3、4π/3。 この流れで2θ-π/6をなぜ求められるのか、仕組みがどうしてもわかりません。どなたか解説お願いします。

  • 三角関数の最大・最小問題がわかりません

    関数cosx+2√3sin(x+π/3)の0≦x≦π/2での最小値と最大値を求めよ。 と言う問題で 三角関数の合成より 2√3sin(x+π/3)=√3sinx+cosx であるので 与式=√3sinx+4cosx   =√19sin(x+θ) ただし角θは cosθ=√3/√19 sinθ=4/√19 を満たす角である。 というところまで分かりました。 しかしこの続きをどう書けば良いか分かりません。 かなり初歩的な問題であるのは承知しておりますがお助けいただければ幸いです。 また書いた式自体も間違っていたらご指摘ください。 よろしくお願いいたします。