• ベストアンサー
  • 暇なときにでも

「高校数学」置換積分法の公式について

x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数579
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#182764

微分形式を用いた形ですね。 それでも良いと思います。 参考URLです。 http://w3e.kanazawa-it.ac.jp/math/category/sekibun/henkan-tex.cgi?target=/math/category/sekibun/chikansekibun.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

関連するQ&A

  • 置換積分の公式

    置換積分について (1)∫f(x)dx=∫f(g(t))g‘(t)dtただしx=g(t) (2)∫f(g(x))g‘(x)dx=∫f(t)dtただしg(x)=t (1)(2)はどのように使い分けるのでしょうか? 教科書や問題集をこなしてもいまいちわかりません。

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

  • 1/y・dy/dtを積分すると、どうしてlogey+C’’になるのでしょうか?

    とある微分方程式の教科書で勉強していると、疑問に思った箇所がありまして(>_<) dy/dt = ry ・・・(1) を、積分するという話なのですが、これを積分した結果が、 logey = rt+C’ ・・・(2) になるそうなのです。 教科書の説明では、「未知関数yを微分したdy/dt(左辺)は、もとの未知関数yに定数を掛けたものになっている(右辺)」ので、「単に両辺を積分しても、右辺をどう積分していいのかわからない」そうなのです。 そこで、"変数分離法"なるものを利用して、左辺を未知関数yだけに、右辺を定数と変数tだけにするために、両辺をyで割り、その後に積分するという手法を採っていました。 そうすれば、左辺が、 ∫1/y・(dy/dt) dt = ∫dy/y = logey+C’’ ・・・(3) となり、右辺は、 ∫r dt = rt+C’’’  ・・・(4) となるので、両辺の積分定数をまとめてC’と置いて、結果として(2)になるそうなのです。 私がわからないのは、左辺の積分、(3)についてです。 分数の積分の公式に、 1/x →積分→ logex(=lnx) +C http://ja.wikipedia.org/wiki/%E3%83%8D%E3%82%A4%E3%83%94%E3%82%A2%E6%95%B0 http://sqa.scienceportal.jp/qa4962140.html というものがあるそうなので、1/yを積分した「∫1/y dt」は、「logey+C’’(定数)」になるのだと思います。 でも、今回の積分は「∫1/y・(dy/dt) dt」であり、「∫1/y・dt」とは違うので、logey+C’’になるのはおかしいと思うのです。 教科書が間違っている可能性は低いと思います。 どうしても理解できませんので、皆様のアドバイスをいただければ幸いです。 よろしくお願いします<m(__)m>

その他の回答 (1)

  • 回答No.2

確かに微分形式を使えば 「約分」できるが・・・ (1)微分形式とは何?どういう定義? (2)微分形式に関数をかける(f(x)dx)ってどういう定義? (3)その微分形式を積分するってどういう定義? こういう問題があるし,これを数学的にきっちり処理するのは 実はそれほど易しい問題ではない 物理とか工学の人は,かなり乱暴に 「二次の項を無視して」とかいうけど, それでは数学ではないのです. ということで,「高校数学」では 教科書のように「証明」して 機械的な計算の正当性は その「証明」で担保すると考えるほうが無難です. 実際,積分の計算とかで必要な「dxとかの約分」は 置換積分で正当化できます.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます

関連するQ&A

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 逆関数の置換積分の原理をもう少し深く理解したいです

    逆関数の置換積分が根本的に分からないのです。(置換積分の考え方についての質問です。) 「πx^2sin(πx^2)の1≦x≦0までの区間とx軸に囲まれた平面をy軸周りに回転させて出来る立体の体積を求めよ」という問題でそれに気づかされました。 有名問題そうなのでグラフの様子や答え自体は周知という前提で話を進めます。 この問題のある解き方ではまず0≦x≦1なる極点のx座標をα(y座標をy1)とします。 そしてαを境目として、問題の関数を2つの逆関数x=g1(y)(0≦x≦α)、x=g2(y)(α≦x≦1)で表現すると、その回転体の体積は∫[0,y1]π(g2(y))^2dy-∫[0,y1]π(g1(y))^2dyとなり この式についてy=f(x)とおくと∫[1,α]πx^2f'(x)dx-∫[0,α]πx^2f'(x)dxとなるということだったと思います。あとはごちゃごちゃ計算すれば値πが求まるわけです。 y=f(x)と置いた後の積分の式はdyの部分がf'(x)dxになっていて、これは置換積分の公式y=f(x)dx⇔y=f(g(t))dx/dt*dtについて、tをyと見て適用した結果が素直に反映されているように見えます。 疑問なのはg1,2(x)^2がx^2になっているところで、なんでこうなるのかちゃんとは理解できていないようなのです。 x=g(y)のような式をy=f(x)でおくのだからx=g(f(x))ということになるでしょう。これは公式のf(g(t))に対応すると思います。公式のこの部分は、tで置換積分すると決めたらf(x)の変数xが全てtで表されるようにしろという意味で私は理解しています。 たとえばx(x-2)^3のような式を積分するならt=x-2と置くでしょうが、そのとき式中の(x-2)は宣言した通り一文字のtで置き換えるだけですしt=x-2はxについて解けますからそれを代入することによって式はtだけの式で表されるということになります。 ですがこれと違って、y=f(x)でおくという場合代入という考え方で式の同値変形ができるわけではありませんよね。公式を適用する中でg(f(x))=xというのはどうやって導出するものなのかが分からないのです。 考えてみたら、逆関数として表現したものを逆関数で置きなおすのだからx=g(y)という等式で結ばれたxでそれは表現されるというのは「なんとなく」そんな気がしますし、これに限っては「逆関数の逆関数はx」と暗記することで済むと思います。 しかし数学なのだから考え方が正しければ途中過程によらず正しい答えにたどり着くという前提のもとで、置換積分の際の置き方というのは自由なはずですから、たとえばy=f(x)ではなくy=2f(x)として置換積分したらどういう流れで元の結果に行き着くだろうと考えたのですが、全くわからなくなりました。 y=2f(x)ですからdy=2'f(x)dxなのは当然でしょう。するとg(2f(x))は2'f(x)dyの2が打ち消されるような式でなければならないわけです。置き換える前の式は∫[0,y1]π(g2(y))^2dyのように式が二乗されていますから求める式はg(2f(x))はx/√(2)ということになる、のでしょうか?いよいよ分からなくなるわけです。x/√2という式でたとえ合っていたとしても、また別の、答えがあらかじめわかっておらず、こうしたつじつま合わせが使えない別の問題は解くことができないのです。 長くなりましたが、なぜ最初の問題について積分の中身をg(y)^2がx^2となるのか、y=2f(x)のように置いた場合にも応用が利くような考え方でご解説いただきたいと思います。よろしくお願いします。

  • 置換積分のイメージ

    置換積分についての質問です。 数式の処理は出来ます。 ただ∫f(g(x))g'(x)dx=∫f(u)du [ただしu=g(x)] という置換積分の式についてイメージができません。 左辺はdxなのに右辺はduである理由も、なんとなくわかっているようなわかっていないような、すごく曖昧な理解しか出来ていません。 そこでこの置換積分の式についての理解を深めさせていただきたいです。 この数式の意味をなるべく言葉で教えて欲しいと思います。 よろしくお願いします。

  • 微分積分初歩的な質問

    1.置換積分において例えば sinx=t とおいた場合、 両辺をまずtで微分して d/dt・sinx=d/dt・t  左辺のd/dtをd/dx・dx/dtとして cosx・dx/dt=1 dtを両辺に”かけて”cosx・dx=dt とできますよね? 2.でももっと簡単な方法(?)を思いつきました。 左辺をxで微分してdxをつける、右辺をtで微分してdtをつける、 としたら解答が一致して、今のところ他の問題でもうまく行っています。 疑問1.以前質問したときd/dxは演算子と教えられました。しかし、 cosx・dx/dt=1 の両辺に dt を”かける”と間違った答えには なりません。演算子は”かける”とかいうものをしちゃいけない ように言われたのですが、結果としてうまくいってしまっている上記の 式に関してはたまたまなのでしょうか?それとも何か私が 勘違いしているのでしょうか? 疑問2.上記2.における文章で説明した”簡単な方法”は たまたまうまく行っているだけでしょうか?それとも、広く行われている 方法でしょうか?

  • 置換積分法

    ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。

  • 微分方程式

    微分可能な関数f(x)が, ∫[0&#65374;x]f(t)dt=x^3-3x^2+x+∫[0&#65374;x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0&#65374;x]tf(x-t)dt=[-tf(x-t)][0&#65374;x]+∫[0&#65374;x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0&#65374;x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,&#160; du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 変数分離法で積分するときの積分変数について質問です。

    変数分離法で積分するときの積分変数について質問です。 例えば、dy/dx=yという式を変数分離法で解く時、両辺にdxをかけて、両辺をyで割って、1/ydy=dxという形にして両辺を積分します。このとき、教科書を見ると「∫1/ydy=∫dx+C」となっており、積分定数がついています。 積分の定義は「∫f(x)=F(x)+C」のように、積分を行ったものに積分定数がつくと習いました。しかし、変数分離の式「∫1/ydy=∫dx+C」では積分を行う前に積分定数がついています。これはなぜなのでしょうか?どなたかわかる方がいらっしゃいましたら教えてください。

  • 積分計算がわかりません

    微分方程式の問題で (x+y)dy/dx=3x+3y+1 の一般解を求めたいのですが 自分がわかった部分は Y=x+y・・・(1)とおいて 両辺をxで微分して dY/dx=1+dy/dx・・・(2) となるので(1)(2)から dY/dx=(4Y+1)/Yになって Y/(4Y+1)dY=dx で両辺を積分すれば求まると思ったのですが 左辺の積分がうまく出来ません また、ここまでの式変形がすでに間違えているのでしょうか

  • e^-1/Tの積分

    現在、次のような微分方程式を解かなければならず、 悪戦苦闘しています。 dx/dT=k/a*exp(-E/RT)*(1-x) この式のうち、k,a,E,Rは定数で既知なので、無視すると、 dx/dT = exp(-1/T)*(1-x) という微分方程式になります。 私はこの式をxとTの変数分離型の微分方程式と捉えて次のように変形しました。 dx/(1-x) = exp(-1/T)dT これの両辺を積分するのですが、左辺は ln{1/(1-x)} という答えになるのがわかるのですが、右辺の ∫exp(-1/T)dT という積分が解けません。 どなたか教えていただけませんでしょうか。 よろしくお願いいたします。