• ベストアンサー
  • 暇なときにでも

置換積分法について

今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数83
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • LOHA
  • ベストアンサー率52% (203/388)

まず x+2=t (x=t-2) という風に置きます。 次に左辺をxについて微分、右辺をtについて微分します。 すると定数は消えるので dx=dt となります。(どうして両辺を微分をするのかはあまり深く考えないほうがいいです。とにかく微分しましょう。) そしたら元の式にガンガン代入します。 分子のxはt-2に、分母のx+2はtに、dxはdtになりますね。 それが∫t-2/t^2dtです。 そしてその次に今度は俗にいう部分分数分解をします。 要するに t-2/t^2 の状態では積分できないので、 1/t-2/t^2 という形に直しただけです(t-2/t^2=1/t-2/t^2です)。 あとはただの積分です。 あと、2/t^2の積分は-2/tです。-2/tを微分してみれば確認できると思いますが。 ちなみに6/t^3を微分すると-18/t^2ですよ。微分と積分がごっちゃになってるようですね。 説明分かりにくいとは思いますが、参考程度になれば幸いです 勉強頑張ってください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 定積分

    ∫[1→2](sinπx)^2dx この問題なんですが、置換積分を用いて t=πxとおいて dx=dt/π tの範囲は[π→2π] ∴∫[π→2π](1/π)(sint)^2dt =(1/π)∫[π→2π](sint)^2dt =(1/π)[(1/3cost)(sint)^3][π→2π] =0 ってなったんですが答えは1/2でした。 どうすればいいでしょうか?

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

その他の回答 (3)

  • 回答No.4
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「dt」は「t の (ほんのわずかな) 増分」を意味するんだといいつつちょっと一般論で: t = f(x) とおくと dt/dx = f'(x) ですが, これは「t の増分は x の増分の f'(x) 倍」という意味でもあります (微係数の定義を思い出してください). つまり, (記号的に) dt = f'(x) dx と書くことができます.

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • LOHA
  • ベストアンサー率52% (203/388)

すいません。No.1の補足です。 次に左辺をxについて微分、右辺をtについて微分します。 すると定数は消えるので dx=dt となります。 の部分がなんだか変なので正確に書いておきます。 x+2 = t をx(tでもかまいません)について微分するとして考えます。すると d(x+2)/dx = dt/dx と書けるので(両辺にd/dxをかけました) 1 = dt/dx となり左辺にdxを移せば dx=dt になります。 というのが正しい説明だと思います(あまり自信はないです)が、普通は「左辺をxについて微分、右辺をtについて微分」という感覚でやってます。微分した後は、微分したものにdをつけて掛けておきます。 例としては、 x+2=t → 1*dx=1*dt → dx=dt もうひとつ例をあげれば x^2=t-2 → 2x*dx=1*dt → 2xdx=dt といった感じです(わかりにくくてすいません)。 長くなりましたが以上です。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

t=x+2とおくと、dt/dx=1 ⇔ dt=dx また、t=x+2より、x=t-2 これより、 ∫x/(x+2)^2dx=∫(t-2)/t^2dx =∫(t/t^2-2/t^2)dt =∫(1/t-2/t^2)dt =∫(1/t)dt-2∫(1/t^2)dt ここで第2項だけ計算すると、 ∫(1/t^2)dt=∫t^(-2)dt =[1/(-2+1)]t^(-2+1)+C' =-t^(-1)+C' =-1/t+C' よって、 ∫x/(x+2)^2dx=log|t|+2/t+C =log|x+2|+2/(x+2)+C ※dxとは何か? 今の段階であまり深く考えないほうが良いですよ。 物理(大学レベル以上の)などを勉強すると分かります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • たわみ角とたわみ曲線の求め方(不定積分の仕方)

    たわみ角とたわみ曲線の求め方(不定積分の仕方) 今、大学の授業で「たわみ角とたわみ曲線」を求める問題を解いています。 この問題では(1)と(2)の方法で答えが変わってきてしまいます。 答えを見ると(2)の置換積分で解いた答えが正しいようです。 何故でしょうか? 説明よろしくお願いします。 (1)A=∫(l-x)^2dx =∫(l^2-2lx+x^2)dx A=(l^2)x-lx^2+(x^3)/3+C x=0のとき A=C (2)A=∫(l-x)^2dx u=l-xとする du/dx=-1 dx=-du A=-∫u^2du =-(u^3)/3+C =-{(l-x)^3}/3+C x=0のとき A=-(l^3)/3+C x=0のときのAの値が異なってしまいます。 よろしくお願いします。

  • 2重積分の「置換積分」?

     I = ∬exp(x+y)dxdy ; 積分領域{(x,y)|0≦x≦1,0≦y≦1} という2重積分を、  t(x,y) = x+y と置き替え  ∂t/∂y = 1  0≦y≦1 ⇒ x≦t≦x+1 と思い  J(x) = ∫exp(t)dt ; 積分区間{t|x≦t≦x+1}  = {exp(1)-1}exp(x)  I = ∫J(x)dx ; 積分区間{x|0≦x≦1}  = {exp(1)-1}^2 のように定積分の置換積分の手法を用いて解いたら一応答えと合っていました。しかし、私としては、  ∂t/∂y = 1 ⇒ dt = dy のように考えている辺りがなんとなく間違っているような気がするのです。この問題だから偶然に答えが合っていたのでしょうか?もしくは、流れは正しくても、断りをもっと立てないといけないのでしょうか? パソコンでの数式の書き方に慣れていませんので、どうも見えにくくて申し訳ありませんが、ご教授のほどよろしくお願いしますm(_ _)m

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

  • 置換積分法について

    置換積分法についての問題で ∫sinAcosAdx=∫sin2A/2dx として積分するものがあったのですが、 ここで私は、(sinA)'=cosA より、sinA=U とおいて ∫sinAcosAdx=∫U*(U)'dx=∫Udu=U^2/2+C=(sinA)^2/2 としてしまいました。 答えのやり方はわかったのですが、なぜここで置換積分法を使ってはいけないのかよく分かりません。 その理由を教えていただけたらうれしいです。 よろしくおねがいします。

  • 置換積分?

    (1)∫1/√(e^x+1)dx (2)∫1/x(3√x+1)dx ※3√はルート3乗根の意味です (1)はe^xをtとおいて計算してみたのですがうまく行かず さらに√(e^x+1)を丸ごとtとおいて計算したのですがどうしても 答えにたどり着けませんでした (2)は3√x+1とtとおいてみたのですが余計に複雑なってしまい そのほか多数試してのですがこちらもよくわかりませんでした それぞれ答えは (1)log(√(e^x+1)-1/√(e^x+1)+1) (2)3log(3√x/3√x+1) とのことですがよろしくお願いします また、積分計算の学習にわかりやすい本がありました 同時に教えていただけないでしょうか

  • 置換積分法

    ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。

  • 置換積分

    ∫1/(2e^x+1)dxを t=2e^x+1として置換し積分すると log|2e^x/(2e^x+1)|となると思いますが 回答はlog|e^x/(2e^x+1)| 答えを微分すると どちらも被積分関数に戻ると思います 置換の仕方に数学的に 何か重要なミスあるのでしょうか? それ違うならこの方法のダメところ教えてください 多分バカな質問だと思いますが 教えてください

  • 置換積分(高校レベルだと思います)

    ∫(1/((1-x)√(x^2+x+1)))dxを√(x^2+x+1)=t-xと置換して求める。 t=x+(x^2+x+1)^(1/2)から dx/√(x^2+x+1)=2dt/(2t+1)を求め、元の式に入れてみました。 ∫(1/((1-x)√(x^2+x+1)))dx=∫(2/((1-x)(2t+1))dtとなります。 ここから、どう工夫すれば良いものなのでしょうか? アドバイスをいただければありがたいです。よろしくお願いします。

  • 置換積分の公式

    置換積分について (1)∫f(x)dx=∫f(g(t))g‘(t)dtただしx=g(t) (2)∫f(g(x))g‘(x)dx=∫f(t)dtただしg(x)=t (1)(2)はどのように使い分けるのでしょうか? 教科書や問題集をこなしてもいまいちわかりません。

  • 置換積分

    置換積分で dt/dx=sinxとかなった時、 dx=dt/sinxと出来るのでしょうか? こういうときはsinx≠0を確認しないと出来ないのでしょうか?