• ベストアンサー
  • すぐに回答を!

不定積分の計算について

不定積分の式で置換不定積分法で解いてますが、 下記は参考書にのっていたものです。 計算をみていくと、どうしてもわからない場所が出てきました。 計算式の最後から2番目より分かりません。教えてください宜しくお願いします。 ∫x(5x-2)^3 dx t=5x-2 とおくと dt=5dx すなわちdx=(1/5)dtとなる。 またx=(t+2)/5 = ∫(t+2)/5 ・t^3 ・ (1/5)dt =1/25 ∫(t^4 + 2t^3 )dt =1/25(1/5t^5 + 2・1/4t^4)+C =1/25(1/5 (5x-2)^5 + 1/2(5x-2)^4 ) + C =1/250 (5x-2)^4 {2{5x-2}+5) + C ← ここから分かりません =1/250(5x-2)^4 (10x+1) + C     ←

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数78
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

積分自体は = 1/25 { 1/5 t^5 + 1/2 t^4 } + C で済んでいて、あとは多項式の整理ですね。 比較的、各ステップの変形内容が見えやすいような 書き方になっていると思うけれど… 一点め:  1/25 { 1/5 (5x-2)^5 + 1/2 (5x-2)^4 } + C = 1/250 (5x-2)^4 { 2(5x-2) + 5 } + C { 1/5 (5x-2)^5 + 1/2 (5x-2)^4 } から 共通因子 1/10 (5x-2)^4 を括り出した。 1/5 (5x-2)^5 + 1/2 (5x-2)^4 = { 1/10 (5x-2)^4 }{ 2(5x-2) } + { 1/10 (5x-2)^4 }{ 5 } = { 1/10 (5x-2)^4 }{ 2(5x-2) + 5 } 二点め:  1/250 (5x-2)^4 { 2(5x-2) + 5 } + C = 1/250 (5x-2)^4 (10x+1) + C { 2(5x-2) + 5 } の括弧内を展開整理した。 2(5x-2) + 5 = 2・5x - 2・2 + 5 = 10x + (-4+5)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。感謝します。全く気づいていませんでした。このように解説されると、納得できるのですが、一人だといつも止まってしまいます(汗)

関連するQ&A

  • 不定積分。

    置換積分で次の問題をとくには? 「不定積分:∫1/(√(1+x^2))」 を解け」 という 問題なのですが、x=tanθで置換をして もできるらしいのですが(参考書には計算が面倒だができる) どうしても最後まで落とすことができません。 ちなみに参考書では√(x^2+1)+x=tで置換をやっていて、 計算は,√(x^2+1)+x=tとおくと[{x/√(x^2+1)}+1]dx=dt よって{1/√(x^2+1)}dx=(1/t)dt したがって∫1/(√(x^2+1))dx=∫(1/t)dt=logt+C=log{√(x^2+1)+x}+C という結果になっています。 しかし、x=tanθの置換をしたやりかたでは、 どのように計算をしていくのかが分りません。 どなたか、計算手順または解答を教えてください。 よろしくおねがいします。

  • この不定積分の計算をおしえてください

    1/(2+sin X) の不定積分の計算がわかりません。 t=tan X/2 を使うらしいんですが、どうしても答えが違うのでおしえてください。 まず sin X = 2t/(1+t^2) cos X =(1-t^2)/(1+t^2) であっていますか? だとしたら dX/dt = 2/(1+t) ですよね? しかし dX/dt =2/(1+t^2) になるらしいんです。 どこが違うのかおしえてください。

  • 定積分の問題です。

    定積分の問題です。 []内に示した置換によって、次の定積分を求めよ。 ∫(0から1)x√(1-x)dx [√(1-x)=t] 次の様に解答したのですが、間違っていたらご指摘いただけたらありがたいです。 √(1-x)=tとおくと、1-x=t^2,x=1-t^2,dx=-2tdt ∫(0から1)x√(1-x)dx=∫(1から0)(1-t^2)×t×(-2t)dt =∫(1から0)(-2t^2+2t^4)dt=∫(0から1)(2t^2-2t^4)dt =[2/3t^3-2/5t^5](0から1)=2/3-2/5=4/15

その他の回答 (2)

  • 回答No.2
  • yyssaa
  • ベストアンサー率50% (747/1465)

・・・・・・・・・ =1/25∫(t^4+2t^3)dt =(1/25){(1/5)t^5+2(1/4)t^4}+C =(1/25){(1/5)t^5+(1/2)t^4}+C =(1/250)(2t^5+5t^4)+C =(1/250){2(5x-2)^5+5(5x-2)^4}+C =(1/250){(5x-2)^4}{2(5x-2)+5}+C =(1/250){(5x-2)^4}(10x-4+5)+C =(1/250){(5x-2)^4}(10x+1)+C ()、{}、[]を正しく使い分けること。省くと混乱するよ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 表記の仕方がよくわかっていないので、とても参考になります。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

ん~.... 通分して計算してるだけ, では?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 通分の所でつまづいてました。

関連するQ&A

  • 不定積分の解き方がわかりません。

    不定積分の解き方がわかりません。 (1)I=∫(2x+3)/(x^2+2x+2) dx (2)I=∫x/{(x+1)^(1/3) -1} dx 2番は、 {(x+1)^(1/3)=t として、 x+1=t^3 x=t^3-1 よって、 dx=3t^2 dt となって、 I=∫{(t^3-1)/(t-1)}* 3t^2 dt まではできたのですが・・・・ これからどう展開すればいいのかわかりません (>_<) どなたかお願いします。

  • 不定積分

    ベッセル関数のPDF資料を見ていて、以下の不定積分がでてきました。 int_ { exp(-t*t) } dt = exp(-t*t) / (-2t) - int_ { exp(-t*t) / (2 * t * t) } dt ここでint_は積分記号を表し、expは指数を求める計算です。 不定積分の式 u'v = uv - int_ { u v' } を使って解こうとしたのですが、うまくいきませんでした。 よろしくお願いいたします。

  • 不定積分

    次の不定積分の計算ができません。 ∫e^2x/((e^x)+3)^2 dx の計算ができません。 とりあえず、置換積分すると2回置換しなければなりません。しかも解答と合わない。 解答はlog(e^x +3)+3/e^x +3 +C となっています。

  • 積分の問題が分かりません。

    1/{x^2*√(x^2-1)}を積分する問題で、 t=x+√(x^2-1)とすると、 x=(t^2+1)/2t、 √(x^2-1)=(t^2-1)/2t、 dx=2(t^2+1)/4t^2となり、 ∫{2t/(t^2+1)}^2*2t/(t^2-1)*2(t^2+1)/4t^2dt= ∫4t/{(t^2+1)(t^2-1)}dt= ∫-2t/(t^2+1)+1/(t+1)+1/(t-1)dt= -log|t^2+1|+log|t+1|+log|t-1|= log|(t^2-1)/(t^2+1)|= log|2{x^2+x√(x^2-1)-1}/2x{x+x√(x^2-1)}|= log|x/√(x^2-1)| となったのですが、回答では√(x^2-1)/xとなるそうです。 何処が間違えているのかどなたかお教え下さい。

  • 不定積分∫log(1+x)/x dxが分かりません

    不定積分∫log(1+x)/x dxが分かりません。教科書(理工系の微分積分学:学術図書出版)を読み漁ったのですが、見つかりませんでした。部分積分と、置換積分を考えてみて計算したのですが、私のやり方では両方うまくいきませんでした。(参考書としては、マセマの微分積分学の本を持っています。) 置換積分:1+x=exp(t)と置換する。(与式)=∫texp(t)/exp(t)-1 dtとなりうまく計算できません。 それともこれは何かでうまくはさんで解くタイプの問題なのでしょうか?(ハサミウチの原理などを利用) 大本の問題は広義積分の問題で、積分区間は、-1→1となっています。 何か知っていることがありましたら、教えてください。よろしくお願いします。

  • 数3の不定積分の問題です

    ∫xe^x^2 dx を置換積分法で解く問題です。 この答えが1/2e^x^2+Cとなる過程を教えてください。 お願いします。

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 不定積分

    (1)∫8xdx (2)∫(-6x)dx (3)∫(-9x^2)dx (4)∫10dx (5)∫(6x-2)dx (6)∫(-3x^2+6x-2)dx (7)∫(x+2)(x-5)dx (8)∫(2x-6)^2dx の不定積分を求め、 式と答え合わせてご回答ください…m(_ _)m 不定積分の問題が60問くらい出て…残りは自分でなんとか (あやふやですが) 出来たのですが 上記したやつが 解けず… 良かったら よろしくお願いします。

  • 不定積分

    ∫{(2x+3)/(x^2-x+1)}dx  を解けです。 ∫{(2x-1+4)/(x^2-x+1)}dx =∫{(x^2-x+1)'/(x^2-x+1)}dx+∫{4/(x^2-x+1)}dx =log(x^2-x+1)+4*∫{1/(x^2-x+1)}dx 上記の式までは分かるのですが・・・。 ∫{1/(x^2-x+1)}dx の不定積分が分かりません。 途中式もあっているか確信はありません。 申し訳ございませんがよろしくお願い致します。

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m