• ベストアンサー
  • すぐに回答を!

置換積分における置換演算について

f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数224
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

合成関数の微分の公式から dt^2/dx=dt^2/dt*dt/dx=2t*dt/dx=1 です。 よって 2tdt=dx と

共感・感謝の気持ちを伝えよう!

質問者からのお礼

確かに、tはxの関数ですね。理解できました。

関連するQ&A

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 置換積分法

    ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。

  • 数3の置換積分を教えてください。

    t=√(x^2+4)など、√の中に2乗が含まれる式を置換したとき、 ルートを外すとt^2=x^2+4などとなりますが、これをdx ⇒dtに変えるとき 2x dx= 2t dtになる理由が分かりません。 このように変形できる理由を教えてください。 ちなみに、 二乗式が含まれない、t=√(4x+3)などが dx⇒dtに変えるときは、x=(t^2-3)/4から、合成関数の微分よりdx = {(t^2-3)/4}' dtとなり dx = t/2 dtになるのは分かります。

その他の回答 (1)

  • 回答No.1
  • yyssaa
  • ベストアンサー率50% (747/1465)

dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 > これは間違いです。 t^2 = x-5の両辺をxで微分すると、2tdt/dx=1になります。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ありがとうございます。 経緯を教えていただけますか?

関連するQ&A

  • 「高校数学」置換積分法の公式について

    x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

  • 置換積分の公式

    置換積分について (1)∫f(x)dx=∫f(g(t))g‘(t)dtただしx=g(t) (2)∫f(g(x))g‘(x)dx=∫f(t)dtただしg(x)=t (1)(2)はどのように使い分けるのでしょうか? 教科書や問題集をこなしてもいまいちわかりません。

  • 置換積分の問題

    √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか?

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

  • 置換積分法についてです。

    使いわけを教えてください。今自分が習っている内では置換積分法は2種類あります。 ひとつは、∫f(x)dx=∫f(g(t))g'(t)dt もうひとつは、∫f(g(x))g'(x)dx=∫f(u)du です。 このふたつをどう使いわけたらいいかがわかりません。どんな時に前者、どんな時に後者、という感じではっきりできませんか?ご回答よろしくお願いします。

  • 微分積分初歩的な質問

    1.置換積分において例えば sinx=t とおいた場合、 両辺をまずtで微分して d/dt・sinx=d/dt・t  左辺のd/dtをd/dx・dx/dtとして cosx・dx/dt=1 dtを両辺に”かけて”cosx・dx=dt とできますよね? 2.でももっと簡単な方法(?)を思いつきました。 左辺をxで微分してdxをつける、右辺をtで微分してdtをつける、 としたら解答が一致して、今のところ他の問題でもうまく行っています。 疑問1.以前質問したときd/dxは演算子と教えられました。しかし、 cosx・dx/dt=1 の両辺に dt を”かける”と間違った答えには なりません。演算子は”かける”とかいうものをしちゃいけない ように言われたのですが、結果としてうまくいってしまっている上記の 式に関してはたまたまなのでしょうか?それとも何か私が 勘違いしているのでしょうか? 疑問2.上記2.における文章で説明した”簡単な方法”は たまたまうまく行っているだけでしょうか?それとも、広く行われている 方法でしょうか?

  • 定積分の問題です。

    定積分の問題です。 []内に示した置換によって、次の定積分を求めよ。 ∫(0から1)x√(1-x)dx [√(1-x)=t] 次の様に解答したのですが、間違っていたらご指摘いただけたらありがたいです。 √(1-x)=tとおくと、1-x=t^2,x=1-t^2,dx=-2tdt ∫(0から1)x√(1-x)dx=∫(1から0)(1-t^2)×t×(-2t)dt =∫(1から0)(-2t^2+2t^4)dt=∫(0から1)(2t^2-2t^4)dt =[2/3t^3-2/5t^5](0から1)=2/3-2/5=4/15

  • 微分と積分の関係 

    微分と積分の関係を説明するときに、定積分を使うのはなぜですか? すなわち、 f(t)の原始関数の一つをF(t)として、 (d/dx)∫[a,x] f(t)dt=(d/dx){F(x)-F(a)}=F'(x)=f(x)  (∫[a,x]は、下端がaで、上端がxです。) のように定積分を使って、微分と積分の関係を説明するのはなぜですか? 不定積分を使うのはだめなのでしょうか? すなわち、 f(x)の原始関数の一つをF(x)として、 (d/dx)∫f(x)dx=(d/dx){F(x)+C}=F'(x)=f(x) というふうにして、微分と積分が逆演算であることを説明するのはだめなのでしょうか? 個人的には、f(t)が出てきてよく分からなくなってしまう定積分の説明よりも、後者の説明の方がいいと思うのですが、どうなのでしょうか? とても困っています。 回答よろしくお願いいたします。

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?