• ベストアンサー
  • すぐに回答を!

置換積分の公式

置換積分について (1)∫f(x)dx=∫f(g(t))g‘(t)dtただしx=g(t) (2)∫f(g(x))g‘(x)dx=∫f(t)dtただしg(x)=t (1)(2)はどのように使い分けるのでしょうか? 教科書や問題集をこなしてもいまいちわかりません。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数148
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

そのような形を見つけることです。 式がどんな形で、どのような形に導きたいのか、 それを理解するためには、繰り返しやるしかないと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 「高校数学」置換積分法の公式について

    x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

  • 置換積分法

    ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。

その他の回答 (3)

  • 回答No.4
  • info22_
  • ベストアンサー率67% (2650/3922)

(1),(2)は左辺と右辺を交換すれば結局は同じ公式です。 (積分変数はどんな文字変数を使っても関係なし) 要は、公式に当てはまりそうな積分は、公式に当てはめるように変形して当てはめてやればいいだけです。 あとは、公式を使えそうなパターンの回答付き演習問題を多くこなして慣れる(感を掴む)ことに尽きます。それには、g(x)とg'(x)の関係の微分公式をしっかり覚えてすぐ使えるようにしていないと、公式が適用できることに気がつかないことになります。

共感・感謝の気持ちを伝えよう!

  • 回答No.3

(1)(2)は同じ式です ∫f(x)dx=∫f(g(t))g‘(t)dt=∫f(g(x))g‘(x)dx=∫f(t)dt です 使い分ける必要はありません。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#199771

両者は完全に同じなので使い分けすること はできません。 積分変数の文字は何を使ってもいいんですよ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 置換積分法についてです。

    使いわけを教えてください。今自分が習っている内では置換積分法は2種類あります。 ひとつは、∫f(x)dx=∫f(g(t))g'(t)dt もうひとつは、∫f(g(x))g'(x)dx=∫f(u)du です。 このふたつをどう使いわけたらいいかがわかりません。どんな時に前者、どんな時に後者、という感じではっきりできませんか?ご回答よろしくお願いします。

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

  • 置換積分

    置換積分で dt/dx=sinxとかなった時、 dx=dt/sinxと出来るのでしょうか? こういうときはsinx≠0を確認しないと出来ないのでしょうか?

  • 置換積分の問題

    √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか?

  • 置換積分による定積分

    お世話になっております。数学3の定積分からの質問です。 教科書の基本的な説明の理解でうろうろしているのですが、その中で些細な疑問があります。 置換積分による不定積分を求める方法と置換積分による定積分を求める方法の考え方です。 これらは基本的には同じことですよね? 教科書では、xをtやらuやらで置換したときに、xとt(u)の対応を考えてから、t(u)のときの下端と上端を積分記号に与えていますが、 例えば、始めは下端と上端を考えないf(x)の不定積分F(x)を置換で求めてから、xの下端上端を考えて定積分の値を求めるのも方法としては間違いでは無いと思うのですが、如何なものでしょうか。 置換積分法による定積分は、煩雑さが解消できるというメリットがあるのかなぁという印象です。 本当に些細な疑問です。ちょこっとコメント下されば幸いです。

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

  • 逆関数の置換積分の原理をもう少し深く理解したいです

    逆関数の置換積分が根本的に分からないのです。(置換積分の考え方についての質問です。) 「πx^2sin(πx^2)の1≦x≦0までの区間とx軸に囲まれた平面をy軸周りに回転させて出来る立体の体積を求めよ」という問題でそれに気づかされました。 有名問題そうなのでグラフの様子や答え自体は周知という前提で話を進めます。 この問題のある解き方ではまず0≦x≦1なる極点のx座標をα(y座標をy1)とします。 そしてαを境目として、問題の関数を2つの逆関数x=g1(y)(0≦x≦α)、x=g2(y)(α≦x≦1)で表現すると、その回転体の体積は∫[0,y1]π(g2(y))^2dy-∫[0,y1]π(g1(y))^2dyとなり この式についてy=f(x)とおくと∫[1,α]πx^2f'(x)dx-∫[0,α]πx^2f'(x)dxとなるということだったと思います。あとはごちゃごちゃ計算すれば値πが求まるわけです。 y=f(x)と置いた後の積分の式はdyの部分がf'(x)dxになっていて、これは置換積分の公式y=f(x)dx⇔y=f(g(t))dx/dt*dtについて、tをyと見て適用した結果が素直に反映されているように見えます。 疑問なのはg1,2(x)^2がx^2になっているところで、なんでこうなるのかちゃんとは理解できていないようなのです。 x=g(y)のような式をy=f(x)でおくのだからx=g(f(x))ということになるでしょう。これは公式のf(g(t))に対応すると思います。公式のこの部分は、tで置換積分すると決めたらf(x)の変数xが全てtで表されるようにしろという意味で私は理解しています。 たとえばx(x-2)^3のような式を積分するならt=x-2と置くでしょうが、そのとき式中の(x-2)は宣言した通り一文字のtで置き換えるだけですしt=x-2はxについて解けますからそれを代入することによって式はtだけの式で表されるということになります。 ですがこれと違って、y=f(x)でおくという場合代入という考え方で式の同値変形ができるわけではありませんよね。公式を適用する中でg(f(x))=xというのはどうやって導出するものなのかが分からないのです。 考えてみたら、逆関数として表現したものを逆関数で置きなおすのだからx=g(y)という等式で結ばれたxでそれは表現されるというのは「なんとなく」そんな気がしますし、これに限っては「逆関数の逆関数はx」と暗記することで済むと思います。 しかし数学なのだから考え方が正しければ途中過程によらず正しい答えにたどり着くという前提のもとで、置換積分の際の置き方というのは自由なはずですから、たとえばy=f(x)ではなくy=2f(x)として置換積分したらどういう流れで元の結果に行き着くだろうと考えたのですが、全くわからなくなりました。 y=2f(x)ですからdy=2'f(x)dxなのは当然でしょう。するとg(2f(x))は2'f(x)dyの2が打ち消されるような式でなければならないわけです。置き換える前の式は∫[0,y1]π(g2(y))^2dyのように式が二乗されていますから求める式はg(2f(x))はx/√(2)ということになる、のでしょうか?いよいよ分からなくなるわけです。x/√2という式でたとえ合っていたとしても、また別の、答えがあらかじめわかっておらず、こうしたつじつま合わせが使えない別の問題は解くことができないのです。 長くなりましたが、なぜ最初の問題について積分の中身をg(y)^2がx^2となるのか、y=2f(x)のように置いた場合にも応用が利くような考え方でご解説いただきたいと思います。よろしくお願いします。

  • 数IIIの積分の証明問題を教えてください。

    数IIIの積分の証明問題で理解できないところがあるので教えてください。 ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ ∫[a/2,a]f(x)dx=∫[0,a/2]f(a-x)dx が成り立つことを証明したいのですが ∫[a/2,a]f(x)dxについてt=a-xで置換すると結果が ∫[a/2,a]f(x)dx=∫[0,a/2]f(a-t)dtとなってしまいます。 この場合、右辺の変数のtをxにして∫[0,a/2]f(a-x)dxとして証明終了にして大丈夫ですか? そこがなかなか納得できなくて困っています、論理的に教えていただければ幸いです。

  • 2重積分の「置換積分」?

     I = ∬exp(x+y)dxdy ; 積分領域{(x,y)|0≦x≦1,0≦y≦1} という2重積分を、  t(x,y) = x+y と置き替え  ∂t/∂y = 1  0≦y≦1 ⇒ x≦t≦x+1 と思い  J(x) = ∫exp(t)dt ; 積分区間{t|x≦t≦x+1}  = {exp(1)-1}exp(x)  I = ∫J(x)dx ; 積分区間{x|0≦x≦1}  = {exp(1)-1}^2 のように定積分の置換積分の手法を用いて解いたら一応答えと合っていました。しかし、私としては、  ∂t/∂y = 1 ⇒ dt = dy のように考えている辺りがなんとなく間違っているような気がするのです。この問題だから偶然に答えが合っていたのでしょうか?もしくは、流れは正しくても、断りをもっと立てないといけないのでしょうか? パソコンでの数式の書き方に慣れていませんので、どうも見えにくくて申し訳ありませんが、ご教授のほどよろしくお願いしますm(_ _)m