• ベストアンサー
  • すぐに回答を!

不定積分。

置換積分で次の問題をとくには? 「不定積分:∫1/(√(1+x^2))」 を解け」 という 問題なのですが、x=tanθで置換をして もできるらしいのですが(参考書には計算が面倒だができる) どうしても最後まで落とすことができません。 ちなみに参考書では√(x^2+1)+x=tで置換をやっていて、 計算は,√(x^2+1)+x=tとおくと[{x/√(x^2+1)}+1]dx=dt よって{1/√(x^2+1)}dx=(1/t)dt したがって∫1/(√(x^2+1))dx=∫(1/t)dt=logt+C=log{√(x^2+1)+x}+C という結果になっています。 しかし、x=tanθの置換をしたやりかたでは、 どのように計算をしていくのかが分りません。 どなたか、計算手順または解答を教えてください。 よろしくおねがいします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数148
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

>log{√(x^2+1)+x} =arcsinh(x) ですね。 θは入力しにくいのでtとして x=tan(t) (0<=t<π/2)とおくと 1/√(1+x^2)=cos(t)(>0) dx=dt/(cos(t))^2 ∫dx/(√(1+x^2))dx=∫dt/cos(t) =∫cos(t)/(cos(t))^2dt =∫cos(t)/(1-(sin(t))^2)dt =(1/2)∫{cos(t)/(1+sin(t))+cos(t)/(1-sin(t))}dt =(1/2){log(1+sin(t))-log(1-sin(t))}+C =(1/2)log[(1+sin(t))/(1-sin(t))]+C =(1/2)log[{(1+sin(t))/cos(t)}^2]+C =log{(1+sin(t))/cos(t)}+C =log{tan(t)+1/cos(t)}+C =log[tan(t)+√{1+(tan(t))^2}]+C =log{x+√(1+x^2)}+C

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すいません、何とか理解できました。 こういうやり方で解くんですね!! 自分ではとても思いつきませんでした。。。 回答本当にありがとうございました。 info22さんみたいな思考回路を 身につけられるように、もっと勉強に励み たいと思う次第であります。

質問者からの補足

すません、=(1/2)log[(1+sin(t))/(1-sin(t))]+C      =(1/2)log[{(1+sin(t))/cos(t)}^2]+C の計算はどうしてlogの中身の(1-sin(t))をcos(t) に変え、 中身全体を二乗しているのでしょうか? おしえてください、お願いします。

関連するQ&A

  • 不定積分

    次の不定積分の計算ができません。 ∫e^2x/((e^x)+3)^2 dx の計算ができません。 とりあえず、置換積分すると2回置換しなければなりません。しかも解答と合わない。 解答はlog(e^x +3)+3/e^x +3 +C となっています。

  • 不定積分の計算について

    不定積分の式で置換不定積分法で解いてますが、 下記は参考書にのっていたものです。 計算をみていくと、どうしてもわからない場所が出てきました。 計算式の最後から2番目より分かりません。教えてください宜しくお願いします。 ∫x(5x-2)^3 dx t=5x-2 とおくと dt=5dx すなわちdx=(1/5)dtとなる。 またx=(t+2)/5 = ∫(t+2)/5 ・t^3 ・ (1/5)dt =1/25 ∫(t^4 + 2t^3 )dt =1/25(1/5t^5 + 2・1/4t^4)+C =1/25(1/5 (5x-2)^5 + 1/2(5x-2)^4 ) + C =1/250 (5x-2)^4 {2{5x-2}+5) + C ← ここから分かりません =1/250(5x-2)^4 (10x+1) + C     ←

  • 不定積分∫log(1+x)/x dxが分かりません

    不定積分∫log(1+x)/x dxが分かりません。教科書(理工系の微分積分学:学術図書出版)を読み漁ったのですが、見つかりませんでした。部分積分と、置換積分を考えてみて計算したのですが、私のやり方では両方うまくいきませんでした。(参考書としては、マセマの微分積分学の本を持っています。) 置換積分:1+x=exp(t)と置換する。(与式)=∫texp(t)/exp(t)-1 dtとなりうまく計算できません。 それともこれは何かでうまくはさんで解くタイプの問題なのでしょうか?(ハサミウチの原理などを利用) 大本の問題は広義積分の問題で、積分区間は、-1→1となっています。 何か知っていることがありましたら、教えてください。よろしくお願いします。

  • 不定積分の問題

    不定積分の問題ですが、部分積分法で解く問題ですが、考えても解答通りにならないので、ここで質問するに至りました。途中計算等を教えてください。お手数になりますが、どうか宜しくお願いします。 (1)∫x sec^(2)(x) dx 私が解くと、xtanx- sec^(2) + c になります。 (2)∫Tan^(-1)(x)dx (3)∫Sin^(-1) (x/3)dx (4)∫e^(-2x) sin3x dx ↑部分積分法を繰り返してもとめるのですが、どのような切り口で求めるのかが分かりませんでした。 答え (1) x tan(x) + log | cos(x) | + C (2) xTan^(-1) (x) - (1/2)log{x^(2) +1} + C (3) xSin^(-1) (x/3) + √(9-x^(2)) + C (4) {-e^(-2x)/13 } (2sin3x + 3cos3x ) + C

  • 積分の問題で質問です。

    不定積分∫dx/(x^4+4)を求めよ、という問題です。 部分分数分解して、 ∫{(-x/8+1/4)/(x^2-2x+2)+(x/8+1/4)/(x^2+2x+2)}dx の形に変形したのですが、とりあえず(-x/8+1/4)/(x^2-2x+2)だけ見て、 (-x/8)/(x^2-2x+2) + (1/4)/(x^2-2x+2) と分解して、片方ずつ積分しました。ここで、 ∫(-x/8)/(x^2-2x+2)dx (x^2=tと置く置換積分を利用しました) =-1/16∫dt/(t-2√t+2) =-1/16∫dt/{(√t-1)^2+1} =(-1/16)*arctan(√t-1) =(-1/16)*arctan(x-1) ∫(1/4)/(x^2-2x+2)dx =1/4∫dx/{(x-1)^2+1} =(1/4)*arctan(x-1) となりました。(x/8+1/4)/(x^2+2x+2)の積分も同様に解きました。 この解き方だと答えにlogは出てきませんが、解答を見るとlogが入ったものとなっていました。一応、別の方法でその解答の形までたどり着けたのですが、上で説明したやり方が間違っているとは思えません。この解法は合っていますか?それとも間違っているのでしょうか。 どなたか教えてください。

  • 大学の不定積分について

    レポート課題の以下の問題がわかりません、よろしくお願いします<(_ _)> ・次の関数の不定積分を求めよ。 x/(-6+5x-x^2)^(1/2) ・次を示せ。 1)∫(tan(x))^n dx=(tan(x))^(n-1)/(n-1)-∫(tan(x))^(n-2) dx (n≧2) 2)∫(log(x))^n dx=x(log(x))^n-n∫(log(x))^(n-1) dx (n≧1) 3)I_n=∫{sin(nx)/sin(x)}dxとしたとき、(n-1)(I_n-I_(n-2))=2sin(n-1)x (n≧2) 解答は答えだけでなく、導く過程もよろしくお願いします。

  • 不定積分

    毎度すみません。参考書の積分の問題を解いているのですが、答えが不確かなもので質問させて頂きます。 ・∫tan^2x dx t = tanx と置くと 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} dt/dx = 1/cos^2x , dx = cos^2x dt 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} X cos^2x dt = ∫(tan^2x) 2tanx dt = 2∫t^3 dt = 2 X t^4/4 = tan^4x /2 ・∫1/(x^2 + 2x + 5) dx =∫1/(x^2 + 2x + 5) X (2x + 2) dx dt/dx = 2x + 2 dx = 1/(2x + 2) dt 与式 =∫1/(x^2 + 2x + 5) X (2x + 2) X 1/(2x + 2) dt =log|x^2 + 2x + 5| 一応自分で解いてみたのですが、誤った記述がありましたらご指摘頂けると有難いです。また、答えを導く際、他に簡単な方法等ありましたら、教えて頂けたら嬉しいです。

  • この不定積分の計算をおしえてください

    1/(2+sin X) の不定積分の計算がわかりません。 t=tan X/2 を使うらしいんですが、どうしても答えが違うのでおしえてください。 まず sin X = 2t/(1+t^2) cos X =(1-t^2)/(1+t^2) であっていますか? だとしたら dX/dt = 2/(1+t) ですよね? しかし dX/dt =2/(1+t^2) になるらしいんです。 どこが違うのかおしえてください。

  • 不定積分の問題

    (1)∫{1/(1-4X^2)}dx (2)∫(1-3X)^5dx の解き方と(3)I=∫2X(X^2+1)^4dxの問題で X^2+1=tと置くと2Xdx=dtと何故なるのかが解らないので 教えてください。あとこの問題で使われる置換積分が解らないので解き方とそのコツ等も教えていただけるとありがたいです。テストに出るのでお願いします。

  • 1/√(x^2+a^2) の積分について

    かなり考えたのですが1/√(x^2+a^2)の積分が うまくいかないので質問させてください。 参考書に載っているのは1/√(x^2+a^2)の原始関数は(xで積分)はlog|x+√(x^2+a)|ともうほぼ公式的に出ています。たしかに長い計算になるので覚えてしまったほうがよいうと思うのですが覚えるのには自分で導き出して納得してから覚えたいので自力で導き出そうと思ったのですが行き詰まってしまいました。私は以下のようにしました。 紛らわしいと思いますのでsin^2θ等は(sinθ)^2と記述しました。また1/√(x^2+a^2)でaでやるといろいろと読む方も疲れると思いますので「1」として計算していきます。よって計算結果がlog|x+√(x^2+1)|となるように目指します。 1/√(x^2+1) 先ずx=tanθとおくと ∫cosθ・(1/couθ)^2 dθ =∫1/cosθ dθ =∫cosθ/(cosθ)^2 dθ =∫cosθ/{1-(sinθ)^2} dθ さらにsinθ=tとおくとdt/dθ = cosθ より ∫1/(1-t^2) dt =1/2∫1/(1-t) + 1/(1+t) dt ={log|(1+t)/(1-t)|}^1/2 =log|√(1+t)/√(1-t)| ここで打ち止めになってしまいました。t,θを元に戻しても公式のような形にはなりませんでした。 どなたかご存知のかたご教授ください。よろしくお願い致します。