• ベストアンサー
  • 困ってます

∫xtan^-1xdxの不定積分

∫xtan^-1xdxの不定積分の問題なんです。 以下のように解いて見たんですが ∫xtan^-1xdxにおいて x=tan(t)とおく,dx=(1/cos^2t)dtとする時 ∫xtan^-1xdx =∫{tan(t)/cos^2t}dt =-∫{t(cost)/cos^3t}dt =t/2cos^2t-1/2∫(1/cos^2t)dt =t/cos^2t-1/2tan(t)+C =1/2{(x^2+1)tan^-1x-x}+C と解いてみたんですが,途中式等あってますかね? よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • info22
  • ベストアンサー率55% (2225/4034)

> ∫xtan^-1(x)dx > =∫{tan(t)/cos^2(t)}dt × =∫{t*tan(t)/cos^2(t)}dt > =-∫{t*cos(t)/cos^3(t)}dt × =∫{t*sin(t)/cos^3(t)}dt =-∫{t(cos(t))'/cos^3(t)}dt > =t/(2cos^2(t))-(1/2)∫(1/cos^2(t))dt > =t/cos^2(t)-(1/2)tan(t)+C × =t/(2cos^2(t))-(1/2)tan(t)+C =(t/2){1+tan^2(t)}-(1/2)tan(t)+C > =(1/2){(x^2+1)tan^-1(x)-x}+C 途中計算が間違っていますが、最終結果は合っています。 不思議ですね? なお、多重括弧をつけないと分子・分母の境が判読不能になりますのでこういった所で式を書くときは上記のような多重括弧を使う書き方をして下さい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧な解答ありがとうございます。 参考にさせて頂き、もう一度問題を解いてみます。

その他の回答 (2)

  • 回答No.2

>∫xtan^-1xdx >=∫{tan(t)/cos^2t}dt  =∫{tan(t)*t/cos^2t}dt  ←tが抜けています。 >=-∫{t(cost)/cos^3t}dt  =∫{t(sint)/cos^3t}dt  ←符号は-にならないと思います。またtant=sint/costですよね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

解答ありがとうございます。 参考にさせて頂き、もう一度問題を解いてみます。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

1行目から 2行目が違う気がするし, そこから 3行目もなぜそうなるのかがわからん. d(tan^-1 x)/dx = 1/(1+x^2) なんだから, ∫xtan^-1xdx = (x^2 tan^-1 x)/2 - ∫x^2/[2(1+x^2)] dx とした方が簡単かな.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 参考にさせて頂き、もう一度問題を解いてみます。

関連するQ&A

  • 積分の問題です。先ほども質問させてもらいましたが、

    積分の問題です。先ほども質問させてもらいましたが、 自分なりに解いた答えと、皆さんの答えが違っていました。 どこが違うのか、考え方が違うのか教えてください。 ※パソコンでの書き方が慣れていないため、かっこの付け方や  途中式で見ずらいものがあると思います。お許しください。 次の定積分を求めよ。  (1)∫(0~π/2)sin^2xcos^3xdx    =∫(0~π/2)sin^2(1-sin^2)cosxdx    =∫(0~π/2)(sin^2-sin^4)cosxdx    =∫(0~π/2)sin^2(cosx)-sin^4(cosx)dx    =[(1/3)sin^3x-(1/5)sin^5x](0~π/2)    =(1/3-1/5)-0    =2/15  (2)∫(0~1)xtan^-1xdx    t=tan^-1xとおくとx:0→1のときt:0→π/4     x=tant dx=1/(cos^2t)dt     ∫(0~1)xtan^-1xdx     =∫(0~π/4)tant/cos^2tdt     =∫(0~π/4)(sint/cost)(1/cos^2t)dt     =∫(0~π/4)sint/cos^3tdt     =∫(0~π/4)(cos^-3t)(sint)dt     =[(1/2)cos^-2(t)](0~π/4)     =(1/2)(1/(1/√2)^2)-(1/2)(1/(1^2)     =1-(1/2)=1/2 と解きました。長くなりましたが、よろしくお願いします。

  • ∫sin^-1xdxの不定積分

    ∫sin^-1xdx という不定積分の問題なんですが,以下のように解いて見ました。 ∫sin^-1xdx =xsin^-1x-∫sin^-1xdx =xsin^-1x-∫x/√(1-x^2)dx =xsin^-1x+√(1-x^2)+C 途中式など展開はこれであってます?教えて下さい。

  • (至急)数学の不定積分の問題

    以下の不定積分を求めて下さい。 途中の式もお願いします。 (1)∫√(e^x-1)dx (2)∫x/cos^2xdx 答え (1)2{√(e^x-1)-tan^-1√(e^x-1)} (2)xtanx+log(cos ←すいません、ここは文字が見えませんでした。

  • 不定積分

    毎度すみません。参考書の積分の問題を解いているのですが、答えが不確かなもので質問させて頂きます。 ・∫tan^2x dx t = tanx と置くと 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} dt/dx = 1/cos^2x , dx = cos^2x dt 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} X cos^2x dt = ∫(tan^2x) 2tanx dt = 2∫t^3 dt = 2 X t^4/4 = tan^4x /2 ・∫1/(x^2 + 2x + 5) dx =∫1/(x^2 + 2x + 5) X (2x + 2) dx dt/dx = 2x + 2 dx = 1/(2x + 2) dt 与式 =∫1/(x^2 + 2x + 5) X (2x + 2) X 1/(2x + 2) dt =log|x^2 + 2x + 5| 一応自分で解いてみたのですが、誤った記述がありましたらご指摘頂けると有難いです。また、答えを導く際、他に簡単な方法等ありましたら、教えて頂けたら嬉しいです。

  • ∫[1→0]tan^(-1)xdxの定積分です

    ∫[1→0]tan^(-1)xdxの定積分です 以下のように解いて見たんですが まず, ∫tan^(-1)xdx =∫(x)'tan^(-1)xdx =xtan^(-1)x-∫{x/(1+x^2)}dx =xtan^(-1)x-1/2∫{2x/(1+x^2)}dx =xtan^(-1)x-1/2log(1+x^2) =xtan^(-1)x-log√(1+x^2) となるので[xtan^(-1)x-log√(1+x^2)][1→0]を求める [xtan^(-1)x-log√(1+x^2)][1→0] ={tan^(-1)-log√2}-1 =-3/2-log√2 と解きました。途中式・解答はあってますか?添削をお願いします。

  • この不定積分の計算をおしえてください

    1/(2+sin X) の不定積分の計算がわかりません。 t=tan X/2 を使うらしいんですが、どうしても答えが違うのでおしえてください。 まず sin X = 2t/(1+t^2) cos X =(1-t^2)/(1+t^2) であっていますか? だとしたら dX/dt = 2/(1+t) ですよね? しかし dX/dt =2/(1+t^2) になるらしいんです。 どこが違うのかおしえてください。

  • 不定積分の問題

    不定積分の問題ですが、部分積分法で解く問題ですが、考えても解答通りにならないので、ここで質問するに至りました。途中計算等を教えてください。お手数になりますが、どうか宜しくお願いします。 (1)∫x sec^(2)(x) dx 私が解くと、xtanx- sec^(2) + c になります。 (2)∫Tan^(-1)(x)dx (3)∫Sin^(-1) (x/3)dx (4)∫e^(-2x) sin3x dx ↑部分積分法を繰り返してもとめるのですが、どのような切り口で求めるのかが分かりませんでした。 答え (1) x tan(x) + log | cos(x) | + C (2) xTan^(-1) (x) - (1/2)log{x^(2) +1} + C (3) xSin^(-1) (x/3) + √(9-x^(2)) + C (4) {-e^(-2x)/13 } (2sin3x + 3cos3x ) + C

  • ∫x^2sin^-1xdxの積分です

    ∫x^2sin^-1xdxの積分についてです。 以下のように解いて見たんですが, x=sintと置くとsin^-1x=tとなりdx=costdtとする時 ∫x^2sin^-1xdx =∫t(sint)^2costdt =∫t(sint)^2(sint)'dt =1/3t(sint)^3-∫t(sint)^3dt =1/3t(sint)^3-1/4t(sint)^4+c tとsintをもとに戻して =1/3x^3sin^1x-1/4x^4sin^-1x+c となりました。途中式・解答はあってますか?よろしくお願いします。

  • 不定積分。

    置換積分で次の問題をとくには? 「不定積分:∫1/(√(1+x^2))」 を解け」 という 問題なのですが、x=tanθで置換をして もできるらしいのですが(参考書には計算が面倒だができる) どうしても最後まで落とすことができません。 ちなみに参考書では√(x^2+1)+x=tで置換をやっていて、 計算は,√(x^2+1)+x=tとおくと[{x/√(x^2+1)}+1]dx=dt よって{1/√(x^2+1)}dx=(1/t)dt したがって∫1/(√(x^2+1))dx=∫(1/t)dt=logt+C=log{√(x^2+1)+x}+C という結果になっています。 しかし、x=tanθの置換をしたやりかたでは、 どのように計算をしていくのかが分りません。 どなたか、計算手順または解答を教えてください。 よろしくおねがいします。

  • 不定積分の計算について

    不定積分の式で置換不定積分法で解いてますが、 下記は参考書にのっていたものです。 計算をみていくと、どうしてもわからない場所が出てきました。 計算式の最後から2番目より分かりません。教えてください宜しくお願いします。 ∫x(5x-2)^3 dx t=5x-2 とおくと dt=5dx すなわちdx=(1/5)dtとなる。 またx=(t+2)/5 = ∫(t+2)/5 ・t^3 ・ (1/5)dt =1/25 ∫(t^4 + 2t^3 )dt =1/25(1/5t^5 + 2・1/4t^4)+C =1/25(1/5 (5x-2)^5 + 1/2(5x-2)^4 ) + C =1/250 (5x-2)^4 {2{5x-2}+5) + C ← ここから分かりません =1/250(5x-2)^4 (10x+1) + C     ←