• ベストアンサー
  • すぐに回答を!

定積分の問題です。

定積分の問題です。 []内に示した置換によって、次の定積分を求めよ。 ∫(0から1)x√(1-x)dx [√(1-x)=t] 次の様に解答したのですが、間違っていたらご指摘いただけたらありがたいです。 √(1-x)=tとおくと、1-x=t^2,x=1-t^2,dx=-2tdt ∫(0から1)x√(1-x)dx=∫(1から0)(1-t^2)×t×(-2t)dt =∫(1から0)(-2t^2+2t^4)dt=∫(0から1)(2t^2-2t^4)dt =[2/3t^3-2/5t^5](0から1)=2/3-2/5=4/15

noname#180825

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数202
  • ありがとう数16

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

こんばんわ。 御明算!^^ 強いていえば、-2tの 2は前にくくりだしたままで計算した方が、計算ミスを減らすためにもよいと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 不定積分の計算について

    不定積分の式で置換不定積分法で解いてますが、 下記は参考書にのっていたものです。 計算をみていくと、どうしてもわからない場所が出てきました。 計算式の最後から2番目より分かりません。教えてください宜しくお願いします。 ∫x(5x-2)^3 dx t=5x-2 とおくと dt=5dx すなわちdx=(1/5)dtとなる。 またx=(t+2)/5 = ∫(t+2)/5 ・t^3 ・ (1/5)dt =1/25 ∫(t^4 + 2t^3 )dt =1/25(1/5t^5 + 2・1/4t^4)+C =1/25(1/5 (5x-2)^5 + 1/2(5x-2)^4 ) + C =1/250 (5x-2)^4 {2{5x-2}+5) + C ← ここから分かりません =1/250(5x-2)^4 (10x+1) + C     ←

  • 置換積分の問題

    √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか?

  • 積分の問題で質問です。

    不定積分∫dx/(x^4+4)を求めよ、という問題です。 部分分数分解して、 ∫{(-x/8+1/4)/(x^2-2x+2)+(x/8+1/4)/(x^2+2x+2)}dx の形に変形したのですが、とりあえず(-x/8+1/4)/(x^2-2x+2)だけ見て、 (-x/8)/(x^2-2x+2) + (1/4)/(x^2-2x+2) と分解して、片方ずつ積分しました。ここで、 ∫(-x/8)/(x^2-2x+2)dx (x^2=tと置く置換積分を利用しました) =-1/16∫dt/(t-2√t+2) =-1/16∫dt/{(√t-1)^2+1} =(-1/16)*arctan(√t-1) =(-1/16)*arctan(x-1) ∫(1/4)/(x^2-2x+2)dx =1/4∫dx/{(x-1)^2+1} =(1/4)*arctan(x-1) となりました。(x/8+1/4)/(x^2+2x+2)の積分も同様に解きました。 この解き方だと答えにlogは出てきませんが、解答を見るとlogが入ったものとなっていました。一応、別の方法でその解答の形までたどり着けたのですが、上で説明したやり方が間違っているとは思えません。この解法は合っていますか?それとも間違っているのでしょうか。 どなたか教えてください。

  • 不定積分の解き方がわかりません。

    不定積分の解き方がわかりません。 (1)I=∫(2x+3)/(x^2+2x+2) dx (2)I=∫x/{(x+1)^(1/3) -1} dx 2番は、 {(x+1)^(1/3)=t として、 x+1=t^3 x=t^3-1 よって、 dx=3t^2 dt となって、 I=∫{(t^3-1)/(t-1)}* 3t^2 dt まではできたのですが・・・・ これからどう展開すればいいのかわかりません (>_<) どなたかお願いします。

  • 不定積分。

    置換積分で次の問題をとくには? 「不定積分:∫1/(√(1+x^2))」 を解け」 という 問題なのですが、x=tanθで置換をして もできるらしいのですが(参考書には計算が面倒だができる) どうしても最後まで落とすことができません。 ちなみに参考書では√(x^2+1)+x=tで置換をやっていて、 計算は,√(x^2+1)+x=tとおくと[{x/√(x^2+1)}+1]dx=dt よって{1/√(x^2+1)}dx=(1/t)dt したがって∫1/(√(x^2+1))dx=∫(1/t)dt=logt+C=log{√(x^2+1)+x}+C という結果になっています。 しかし、x=tanθの置換をしたやりかたでは、 どのように計算をしていくのかが分りません。 どなたか、計算手順または解答を教えてください。 よろしくおねがいします。

  • 不定積分が解答と一致しません

    √{(x-1)/(2-x)}を積分せよ。という問題の答えが解答と一致しません √(2-x)=tと置いてx=2-t^2,dx==-2tdt  ∫√{(x-1)/(2-x)}dx =∫√(1-t^2)(-2tdt)/t =-2∫√(1-t^2)dt [∫√(1-t^2)dt]の部分は公式を使ったり、部分積分を用いたりして[{t√(1-t^2)+arcsint}/2](ここでは積分定数を省略) よって-√(x-1)(2-x)-arcsin√(2-x)+C(C:積分定数)だと思ったのですが、解答には arctan√{(x-1)/(2-x)}-√(x-1)(2-x)+Cとあります。 -√(x-1)(2-x)-arcsin√(2-x)+Cという答えはあっていますか?

  • 不定積分の問題

    (1)∫dx/{(2x+1)√(1-x^2)} (2)∫√(x^2+2x+2)dx/x という問題です。解答と自分の答えが合わず、どこがまちがっているのか分かりません。指摘していただけないでしょうか。よろしくお願いします。 (1)t=√{(1+x)/(1-x)}とおく。 dt=1/(1-x)^2*√{(1-x)/(1+x)}dx 与式=∫1/{(2x+1)√(1-x^2)}*(1-x)^2√{(1+x)/(1-x)}dt =∫(1-x)/(2x+1)dt =2/3∫1/(t^2-1)dt ここからどうしたらいいのか分からなくなってしまいました。 また、解答は1/√3*log{(x+1/2)/(x+2+√(3-3x^2))}となっているのですがどうしてこうなるのかさっぱりです。 (2)t=√(x^2+2x+2)+xとおく。 dt={(x+1)/√(x^2+2x+2)+1}dx =(t+1)/√(x^2+2x+2)dx 与式=∫(x^2+2x+2)/x(t+1)dt ここから分かりません。 解答はarcsinh(x+1)+√2log{x/(x+2+√(2x^2+4x+4))+√(x^2+2x+2)}となっています。 解答までの導き方も合わせて教えていただけると助かります。 略解しかなく、本当に困っています。 どうかよろしくお願いします。

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

  • パラメータ表示をつかった積分について質問です(高校数学の範囲)

    わからないところがあったので、 わかる人教えてください x=sin2t y=sin3t (0≦t≦π/3) が定める曲線とx軸がつくる面積を求めよという問題で (図は画像に添付してあるものです) 赤くしてる部分の面積を求めるのですが 解説を見ると、 最初はy=sin3tをdxで積分している式のdxをdtに変換し (↑x=sin2tを微分したものを使う) tで積分していました 私は最初からdxをまったく使わずにdtで積分してしまったので答えが完全に違っていました 解答の言っている事が正しいのはわかるのですが、 私の考えのどこが間違っているのか教えてください -私の考え- 1、OからAまでのyの値を足し 2、AからBまでのyの値を引けば良いのではないか 3、その時々のyの値はtで決まるのだからxの範囲とtの範囲が同じであれば最初からtで積分しても問題ないのではないか?です