• ベストアンサー
  • すぐに回答を!

積分がわかりません

いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数121
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

順に: 2t×log(1+t) で部分積分 t = sin x とおいて置換積分 1/[x(1-x)(1+x)] = a/x + b/(1-x) + c/(1+x) と部分分数に分解 同じく 1/[x(x^2 - x + 1)] = a/x + (bx +c)/(x^2 - x + 1) と部分分数に分解 log の真数の分子と分母に 1 + sin x を掛けてみる

共感・感謝の気持ちを伝えよう!

質問者からの補足

回答ありがとうございます。 最初の問題の部分積分ですが、自分もやってみましたがどうもきれいになりません。 どうやればいいんですか??

関連するQ&A

  • 積分 問題 1/sinx について

    積分 問題 1/sinx について ∫(1/sinx)dxについて。 ∫(1/sinx)dx=∫(sinx/1-cos^2x)dxとする。 cosx=tの置換と部分分数分解を用いて、 1/2(log|(1-t)/(1+t)|)+C まで求めました。 結果、1/2(log|(1-cosx/(1+cosx))|)+Cとなると思います。 テキストの回答が、1/2(log(1-cosx/(1+cosx)))+C と絶対値無しで記載されているのですが、絶対値は必要無いのでしょうか? なぜ絶対値が外せるのでしょうか? (logx)’はlog(-x)’と同じなのでlog|x|’としていると考えているのですが、 絶対値はあっても無くても良いのでしょうか? ご回答よろしくお願い致します。

  • 不定積分について

    大学の微分積分でてきた問題(答えが無い) で(2X+3)/X^2+9を不定積分しろとあったのですが 分子が分母を微分した結果にならないからlogで積分できないし 部分分数にすることもできずまた分子を分母でわることもできず 積分ができなくて困っています それと(X-1)log(X+1)dxの不定積分とe^2xcosxdxの不定積分を 部分積分法を使ってやってみたのですが何回くりかえしても 式が展開されるだけで困っています

  • 三角関数の積分

    1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx  cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。

その他の回答 (2)

  • 回答No.3
  • zk43
  • ベストアンサー率53% (253/470)

長いので最後だけ。 |(1+sinx)/(1-sinx)|の分子・分母に1+sinxを掛けると |(1+sinx)^2/(cosx)^2|=|(1+sinx)/cosx|^2 となるので、logの前に掛かっている1/2をlogの中に入れると、 log|(1+sinx)/cosx|になる。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • debut
  • ベストアンサー率56% (913/1604)

>最初の問題の部分積分ですが、  ∫2tlog(1+t)dt=t^2log(1+t)-∫{t^2/(1+t)}dt         (t^2を1+tで割って)         =t^2log(1+t)-∫{(t-1)+1/(1+t)}dt         =・・・・  となりますね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど。 ありがとうございました !!

関連するQ&A

  • 積分 問題

    積分 問題 ∫(1/cos^3x)dxについて、テキストの回答が理解できません・・・ ∫(cosx/cos^4x)dx =∫(cosx/(1-sin^2x)^2) sinx=tとおいて ∫(1/(1-t^2)^2)dx =∫(1/((1-t^2)(1+t^2)))dx としているのですが、(1-t^2)^2=(1-t^2)(1+t^2) となる理由がわかりません。 ∫(1/((1-t^2)(1+t^2)))dx =∫1/4{(1/(1+t)^2)+(1/1+t)+(1/(1-t)^2)+(1/1-t)}dx と部分分数分解しているのですが、どのように行えば上記のように部分分数分解出来るのでしょうか? ご回答よろしくお願い致します。

  • 積分の問題教えてください

    積分の問題教えてください 1,部分積分 (1)∫xe^(2x) dx (2)∫xsin2x dx (3)∫(logx)/(x^3) dx (4)∫log(1+x) dx 2,置換積分 (1)∫(dx)/(2x+1)^3 (2)∫x((x^2)+1)^5 dx (3)∫x(e^(-x)^(2)) dx (4)∫cos^(3)xsinx dx (5)∫e^(x)cosx dx の9問です。 どうかお願いします。

  • 三角関数の積分

    どこが間違っているのでしょうか.部分積分を利用して解こうとしました。 ∫tanx dx =∫sinx/cosx dx = (-cosx)/cosx -∫(-cosx)・{(cosx)-1}’dx = -1-∫(-cosx)(-1)・(cosx)-2・(-sinx)dx       = -1+∫sinx/cosx dx  となり 0=-1で矛盾します。 tanx = -(cosx)’/cosxとみて 答えは -log|cosx|となることはわかるのですが。上記の部分積分の間違っている点を教えてください。

  • この積分の問題教えてください

    この問題の答えが無いので教えてください。 自分なりに解いたのですが、合ってるでしょうか? ∫[0,π/2] 1 / sinx+cosx dx tan(x/2)=t とおくと、 dx=2/(1+t^2) dt cosx=(1-t^2)/(1+t^2) sinx=2t/(1+t^2) となる。 置換した後の積分範囲は、 x|0→π/2 t|0→ 1 ∫[0,π/2] 1 / sinx+cosx dx = -2∫[0,1] 1 / t^2-2t-1 dx   分母を平方完成して = -2∫[0,1] 1 / (t-1)^2-2 dx  公式:∫[1 / x^2-a^2] = 1/2a log|x-a/x+a|なので =1/√2 log|(-√2-1) / (√2-1)| logの中が汚いかんじで合ってるか不安です。 教えてください。

  • 数学 積分法

    数学でわからない問題があります。 cos^3xsinxを積分したいのですが、うまくいきません。 私が考えたのはこういうものです。 sinx=tとおく。cosxdx=dt cos^3xsinx=cos^2xcosxsinx また、cos^2x=1-sin2xより ∮cos^3xsinx dx=∮(1-t^2)t dtとなる。 よって1/2t^2-1/4t^4+Cより 1/2sin^2x-1/4sin^4x+C (Cは積分定数) こうしたのですが違いました。 cosx=tとすると解答と一致し、 -1/4cos^4x+C となりました。 sinx=tのやり方のどこが間違っているのかわかりません。 教えてください。

  • 指数関数×三角関数の積分

    (e^x)×(cosx)の部分積分を解く問題なのですが、 I=∫(e^x)×(cosx)dx =(e^x)(cosx)+∫(e^x)(sinx)dx =(e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dx ∴I=1/2(e^x)(cosx+sinx)+C と、模範解答に書いてあったのですが、 (e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dxが1/2(e^x)(cosx+sinx)+Cになる、という所がいまいちわかりません。 初歩的な質問で申し訳ないのですが、教えて頂けたら有り難いです。 あと、似た問題で(e^x)(sinx)の積分を解く問題もあったのですが同じように1/2(e^x)(-cosx+sinx)+Cという形になったりするのでしょうか。

  • 不定積分

    毎度すみません。参考書の積分の問題を解いているのですが、答えが不確かなもので質問させて頂きます。 ・∫tan^2x dx t = tanx と置くと 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} dt/dx = 1/cos^2x , dx = cos^2x dt 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} X cos^2x dt = ∫(tan^2x) 2tanx dt = 2∫t^3 dt = 2 X t^4/4 = tan^4x /2 ・∫1/(x^2 + 2x + 5) dx =∫1/(x^2 + 2x + 5) X (2x + 2) dx dt/dx = 2x + 2 dx = 1/(2x + 2) dt 与式 =∫1/(x^2 + 2x + 5) X (2x + 2) X 1/(2x + 2) dt =log|x^2 + 2x + 5| 一応自分で解いてみたのですが、誤った記述がありましたらご指摘頂けると有難いです。また、答えを導く際、他に簡単な方法等ありましたら、教えて頂けたら嬉しいです。

  • 不定積分 部分積分

    ∫(3x+2)sinx dx =∫{(sinx)×(3x+2)} dx =(-cosx)×(3x+2)-∫{(-cosx)×3}dx =-(3x+2)cosx-3∫-cosx dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx or =(3x+2)(-cosx)-∫(3x+2)'(-cosx)dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx この2つのやり方どちらで部分積分で解答した方がいいんですか? また、他の部分積分の時にはどちらのやりかたでやったほうがいいですか?

  • x/(a^2+x^2)の積分について

    x/(a^2+x^2)の積分について t=a^2+x^2とおいて dt=2xdx よって ∫(x/(a^2+x^2))dx=(1/2)*∫(1/t)dt=(1/2)*log(t)+C と置換積分により積分することが出来ますが、 部分積分では計算できないのでしょうか? (a^2+x^2)'=2x ∫(x/(a^2+x^2))dx=(1/2)*∫[(1/(a^2+x^2))*(a^2+x^2)']dx として計算できると思ったのですが、うまく行きません。 どなたかアドバイス頂けたら幸いです。

  • 不定積分

    ∫cos^2x/(1+sinx) dx という問題があるのですが模範解答は分子を1-sin^2と変形して 約分をし簡単な形に持っていく形式を取っています。私もこれは理解できます。 答え、x+cosx+C 私は違うやり方でやってみたのですが答えが合わずしかも納得がいかないという 悪循環になってしまいました。 下に私のやった方法を書くので間違いを指摘していただければと思います。 ∫cos^2x/(1+sinx) dx sinx=tとおくと cosxdx=dtだから与式は ∫cosx/(1+sinx) dt =∫t'/(1+t) dt =∫(t+1)'/(1+t) dt =log|t+1|+C =log(sin+1)+C お願いいたします