• ベストアンサー
  • すぐに回答を!

積分 問題 1/sinx について

積分 問題 1/sinx について ∫(1/sinx)dxについて。 ∫(1/sinx)dx=∫(sinx/1-cos^2x)dxとする。 cosx=tの置換と部分分数分解を用いて、 1/2(log|(1-t)/(1+t)|)+C まで求めました。 結果、1/2(log|(1-cosx/(1+cosx))|)+Cとなると思います。 テキストの回答が、1/2(log(1-cosx/(1+cosx)))+C と絶対値無しで記載されているのですが、絶対値は必要無いのでしょうか? なぜ絶対値が外せるのでしょうか? (logx)’はlog(-x)’と同じなのでlog|x|’としていると考えているのですが、 絶対値はあっても無くても良いのでしょうか? ご回答よろしくお願い致します。

  • RY0U
  • お礼率40% (434/1065)

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数1493
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

>結果、1/2(log|(1-cosx)/(1+cosx)|)+Cとなると思います。 >テキストの回答が、1/2(log((1-cosx)/(1+cosx))+C と絶対値無しで記載されているのですが、絶対値は必要無いのでしょうか? なぜ絶対値が外せるのでしょうか? -1≦cos(x)≦1であり、対数の真数条件から cos(x)≠1、 また、分母≠0 から cos(x)≠-1なので -1<cos(x)<1となります。したがって 1-cos(x)>0 かつ 1+cos(x)>0 となるから (1-cosx)/(1+cosx)>0 ゆえに、 (1/2)(log|(1-cosx)/(1+cosx)|)+C =(1/2)log((1-cosx)/(1+cosx))+C と絶対値がはずせます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 理解出来ました。

関連するQ&A

  • 積分 問題

    積分 問題 ∫(1/cos^3x)dxについて、テキストの回答が理解できません・・・ ∫(cosx/cos^4x)dx =∫(cosx/(1-sin^2x)^2) sinx=tとおいて ∫(1/(1-t^2)^2)dx =∫(1/((1-t^2)(1+t^2)))dx としているのですが、(1-t^2)^2=(1-t^2)(1+t^2) となる理由がわかりません。 ∫(1/((1-t^2)(1+t^2)))dx =∫1/4{(1/(1+t)^2)+(1/1+t)+(1/(1-t)^2)+(1/1-t)}dx と部分分数分解しているのですが、どのように行えば上記のように部分分数分解出来るのでしょうか? ご回答よろしくお願い致します。

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 積分の問題教えてください

    積分の問題教えてください 1,部分積分 (1)∫xe^(2x) dx (2)∫xsin2x dx (3)∫(logx)/(x^3) dx (4)∫log(1+x) dx 2,置換積分 (1)∫(dx)/(2x+1)^3 (2)∫x((x^2)+1)^5 dx (3)∫x(e^(-x)^(2)) dx (4)∫cos^(3)xsinx dx (5)∫e^(x)cosx dx の9問です。 どうかお願いします。

その他の回答 (3)

  • 回答No.4
  • OurSQL
  • ベストアンサー率40% (53/131)

>>(logx)’はlog(-x)’と同じなのでlog|x|’としていると考えているのですが、 log x の導関数と log ( - x ) の導関数は、確かに同じ式になりますが、変域が違います。 よって、「(logx)’はlog(-x)’と同じなので」という表現は、少し気になります。 それより前の部分で、 >>なぜ絶対値が外せるのでしょうか? とありますが、それよりも、そもそも、なぜ絶対値が登場したのでしょうか。 不定積分の問題では、積分する区間が書かれていませんが、積分する区間が存在しないわけではありません。 この問題においては、積分可能な区間は大雑把に2種類に分けられます。 どちらの場合も、絶対値が不要なのは明らかです。 質問に対する回答には全然なっていないのですが、不定積分の定義を、もう一度確認してみることをお勧めします(原始関数と不定積分の違いも含めて)。 また、積分定数というものが持つ意味も、曖昧なままで終わらせないことが大事だと思います(特に、積分定数を任意定数と言い換えることの是非については、深く考えていただきたいです)。

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

絶対値記号が有っても無くても、 積分定数が πi ずれるだけだから じゃないですかね。 一般解としては、どちらでも同じですよ。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

-1 <= cos(x) < 1

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の積分について

    ∫1/(sinx)^3dx これを置換せずに積分することは可能でしょうか? 似た形で、例えばチャートには ∫1/sinxdx これを置換積分を利用して解いていましたが、実際分母分子にsinxをかけた後分母の1-(cosx)^2を部分分数分解すると分かれた二項がともにf'(x)/f(x)の形になり、きれいに [1/2log(1-cosx)/(1+cosx)] とすることが出来ました。同様にして3乗でも出来ると思ったのですが途中で詰まってしまいます。3乗になるとまた話が別なのでしょうか?アドバイスお願いします!

  • 積分の計算(楽にならないか・・・・)

    いずれも置換積分すれば出来るものですが、置換をせずに出来ないものかと重い自分でそれらしく変形してみましたが、この続きが分からないので教えてください。 1 ∫x*(2x+3)^3*dx =1/2*∫(2x+3)'(2x+3)^3*dx 2 ∫(cos^3x-1)*sinx*dx =-∫(cos^3x-1)*(cosx)'*dx 上のような形にすると置換しなくても計算できる場合がありますよね。でも上の場合は無理でしょうか。出来る気がしてなりません。 どなたか教えてください。よろしくです。

  • 微分積分

    微分と積分について教えてもらいたいのですが、 微分が 1,y=cosx/(1-x^2) 2,y=e^<ktan^(-1)x^2> 積分が 3,y=(x-3)^/x^2 4,y=1/(3+4x^2)^(1/2)+1/(3-16x^2)^1/2  5,∫x/(1+2x^2)dx (2→3) 6,∫e^(-x)sinxdx  (0→π/2) 1,は、{2xcosx-(1-x^2)sinx}/(1-x^2)^2 3,は、x-3logx-9/x 5,は、(log19-log5)/4 であっているでしょうか? 2,4,6,はまったくわかりません。解法を教えてください。 また、数式の入力が間違っているかもしれませんので、不明な場合や明らかに違う場合には、ご指摘をお願いします。

  • 至急!高校の数III積分です

    不定積分です。とにかく急いでます。答えまでの解法を教えてください! よろしくお願いします!! (1)∫x(3x-2)^3 dx 答え…1/90(3x-2)^4(6x+1)+C (2)∫x+2/(x-1)^3 dx答え…-(2x+1)/2(x-1)^2+C (3)∫(sin x/2+cos x/2)^2 dx 答え…x-cosx+C (4)∫cos^2 x/2 dx 答え…1/2x+1/2・sinx+C (5)∫sinx・cosx・cos2x dx 答え…-1/16・cos4x+C (6)∫x^2+x+1/x^2+1 dx 答え…x+1/2・log(x^2+1)+C (7)∫x^4/x^2-1 dx 答え…1/3・x^3+x+1/2・log|x-1/x+1|+C (8)∫x^3/x^2-4 dx 答え…1/2・x^2+2log|x^2-4|+C (9)∫(logx)^3 dx 答え…x(logx)^3-3x(logx)^2+6x・logx-6x+C

  • 積分について

    ∫tanxdx この積分なのですが、∫(sinx/cosx)dxのcosxを置換して求める方法は出来ますが、logx=tと置いて計算する方法もあるみたいです。どこからlogxが出てくるのか全然分からないので、どのような計算になるのか教えてください!

  • 積分 問題

    積分 問題 ∫[α~β](x-α)^2(x-β)dxについて。 私は、(x-α)^2(x-β)を展開して解いていたのですが、 テキストの回答には, (x-α)^2(x-β)=(x-α)^2(x-α+α-β)=(x-α)^3-(β-α)(x-α)^2 として積分すれば-(β-α)^4/12となるとありました。 (x-α)^2(x-β)=(x-α)^2(x-α+α-β)=(x-α)^3-(β-α)(x-α)^2 の仕方が理解できません。 どのような操作を行っているのでしょうか? 部分分数分解的な操作なのでしょうか??? また、∫[α~β](x-α)^3-(β-α)(x-α)^2dxはどのように積分すれば 良いのでしょうか? 今回は、xが括弧内で1次式なので、そのまま1/4(x-α)^4としてよいかと思いますが、 仮にxが2次式以上であれば、やはり置換した方が無難でしょうか? 自分で読み返したのですが、数式が本当に読み難くてすいませんm(_ _)m ご回答よろしくお願い致します。

  • 三角関数の積分

    1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx  cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。

  • ∫log sinx dxや∫log cosx dx のやり方

    ∫log sinx dxや∫log cosx dxの計算をやっているのですが、置換積分や部分積分をフル活用しているのですが、先が見えません。助けて下さい。

  • 三角関数の不定積分

    |=絶対値 2^3=2の3乗という意味です ∫1/cosx dx ←これを計算していくと =1/2 log{|(1+sinx)/(1-sinx)|}+C (Cは積分定数) ここまでは分かるのですが・・・ log{(1+sinx)/|cosx|}+C なぜこうなるのか解りません。 参考書には、(1+sinx)/(1-sinx)={(1+sinx)/cosx}^2 だからと書いてあるのですが、どうやっても=関係になりませんし、あまり意味がわかりません。 すごく詳しく説明していただけると嬉しいです。 何方かご教授ください。

  • 積分 部分分数分解

    積分 部分分数分解 積分 部分分数分解 ∫[0~1](3x-1)/((x+1)(x^2+1))dxを求めよ。 回答を読んでも理解できないので教えて下さい。 添付画像の2段目の2x+1/(x^2+1)=(x/(x^2+1))+(1/(x^2+1)) が理解できません・・・ 回答が間違っているのでしょうか? 昨日部分分数分解で質問させていただきましたので、そちらのURLも載せておきます。 http://okwave.jp/qa/q5809154.html