• ベストアンサー
  • すぐに回答を!

置換積分法についてです。

使いわけを教えてください。今自分が習っている内では置換積分法は2種類あります。 ひとつは、∫f(x)dx=∫f(g(t))g'(t)dt もうひとつは、∫f(g(x))g'(x)dx=∫f(u)du です。 このふたつをどう使いわけたらいいかがわかりません。どんな時に前者、どんな時に後者、という感じではっきりできませんか?ご回答よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数206
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

a=b ⇔ b=a なので 仮に、a=bという公式があればbを変形してaの形に表すこともできるくらいの応用は必要ではないでしょうか

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 置換積分の公式

    置換積分について (1)∫f(x)dx=∫f(g(t))g‘(t)dtただしx=g(t) (2)∫f(g(x))g‘(x)dx=∫f(t)dtただしg(x)=t (1)(2)はどのように使い分けるのでしょうか? 教科書や問題集をこなしてもいまいちわかりません。

  • 置換積分法

    ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

その他の回答 (1)

  • 回答No.2

2種類ではありません。 上記は二つで一種類です。 ∫f(x)dx=∫f(g(t))g'(t)dt の左辺と右辺を入れ替えると、 ∫f(g(t))g'(t)dt = ∫f(x)dx ここで、t→x,x→uとすると、 ∫f(g(x))g'(x)dx=∫f(u)du です。 (x+y)(x-y) = x^2 - y^2 (^は2乗の意味) と a^2 - b^2 = (a+b)(a-b) を別々の公式として覚えていますか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 「高校数学」置換積分法の公式について

    x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

  • 置換積分による定積分

    お世話になっております。数学3の定積分からの質問です。 教科書の基本的な説明の理解でうろうろしているのですが、その中で些細な疑問があります。 置換積分による不定積分を求める方法と置換積分による定積分を求める方法の考え方です。 これらは基本的には同じことですよね? 教科書では、xをtやらuやらで置換したときに、xとt(u)の対応を考えてから、t(u)のときの下端と上端を積分記号に与えていますが、 例えば、始めは下端と上端を考えないf(x)の不定積分F(x)を置換で求めてから、xの下端上端を考えて定積分の値を求めるのも方法としては間違いでは無いと思うのですが、如何なものでしょうか。 置換積分法による定積分は、煩雑さが解消できるというメリットがあるのかなぁという印象です。 本当に些細な疑問です。ちょこっとコメント下されば幸いです。

  • 置換積分

    置換積分で dt/dx=sinxとかなった時、 dx=dt/sinxと出来るのでしょうか? こういうときはsinx≠0を確認しないと出来ないのでしょうか?

  • 置換積分のイメージ

    置換積分についての質問です。 数式の処理は出来ます。 ただ∫f(g(x))g'(x)dx=∫f(u)du [ただしu=g(x)] という置換積分の式についてイメージができません。 左辺はdxなのに右辺はduである理由も、なんとなくわかっているようなわかっていないような、すごく曖昧な理解しか出来ていません。 そこでこの置換積分の式についての理解を深めさせていただきたいです。 この数式の意味をなるべく言葉で教えて欲しいと思います。 よろしくお願いします。

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

  • 積分について聞きたいことがあります。

    ∫√(2x-1) dx という問題なんですが、僕がやると二つ答えが出てしまいます。どこが間違ってるのか、教えてください。 ひとつめは、 ∫√(2x-1) dx = 2*2/3*(2x-1)^3/2 + c = 4/3*(2x-1)^3/2 + c となり、 ふたつめは、 ∫√(2x-1) dx u = 2x-1 とおいて、 du = 2*dx dx = du/2 ∫√(2x-1) dx = ∫1/2*√u du = 1/3*u^3/2 + c = 1/3*(2x-1)^3/2 + c となります。 ふたつめは置換積分でやりました。 どっちが正しいのか、というのと、なぜもう一方のやり方でやってはいけないのか、という理由を教えてください。

  • 置換積分の問題

    √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか?

  • 不定積分の計算について

    不定積分の式で置換不定積分法で解いてますが、 下記は参考書にのっていたものです。 計算をみていくと、どうしてもわからない場所が出てきました。 計算式の最後から2番目より分かりません。教えてください宜しくお願いします。 ∫x(5x-2)^3 dx t=5x-2 とおくと dt=5dx すなわちdx=(1/5)dtとなる。 またx=(t+2)/5 = ∫(t+2)/5 ・t^3 ・ (1/5)dt =1/25 ∫(t^4 + 2t^3 )dt =1/25(1/5t^5 + 2・1/4t^4)+C =1/25(1/5 (5x-2)^5 + 1/2(5x-2)^4 ) + C =1/250 (5x-2)^4 {2{5x-2}+5) + C ← ここから分かりません =1/250(5x-2)^4 (10x+1) + C     ←

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?