指数関数の積分とは?解法を解説

このQ&Aのポイント
  • 指数関数の積分について解説します。
  • 積分∫[-∞,0] e^{(-u^2)/2} duの解法を教えます。
  • 置換積分を用いて、[e^(???)][-∞,0]という形に積分を変形します。
回答を見る
  • ベストアンサー

指数関数の積分

∫[-∞,0] (1/√(2π)) e^{(-u^2)/2} du =(1/√(2π)) ∫[-∞,0] e^{(-u^2)/2} du この部分の解き方を教えて下さい。 ∫[-∞,0] e^{(-u^2)/2} du 多分、置換積分だと思いますが解けません。 f(t) = e^t t = g(u) = -(1/2)u^2 f(g(u)) = e^{-(1/2)u^2} t = -(1/2)u^2 dt/du = -(1/2)(2)u dt/du = -u dt = -u du ただ、この形だと ∫[-∞,0] e^{(-u^2)/2} du に適用できません。 ∫[-∞,0] u e^{(-u^2)/2} du のようにuが掛けられてたら適用できたと思います。 どうかこの積分が終わるところまで解いて下さい。 つまり、 [e^(???)][-∞,0] の形になるまでお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • musume12
  • ベストアンサー率63% (19/30)
回答No.3

 高校生なのかな?  不定積分   ∫e^(-x^2) dx は初等関数では表せない積分です。しかし、   ∫[-∞,∞]e^(-x^2) dx とか   ∫[0,∞]e^(-x^2) dx ならば工夫次第で積分が可能になります。その工夫は大学の微分積分学の参考書の重積分の項を参照すれば、必ず載っている重要な積分です。したがって大学生なら No.2 の方の回答で十分とは思いますが、高校生でも雰囲気がつかめるような画像を貼り付けときます(笑)。  dudv が rdrdθに変換されることなどが不思議と思ったら、やはり参考書を読んでください。

futureworld
質問者

お礼

ベストアンサーを差し上げます。 はい、高校生です。 (正確には永遠の17歳です。) 初等関数では表せない積分だったんですね。 そんなの習ったっけ?と思って、教科書を調べてみたら、 ∫[-∞, ∞] e^{(-u^2)/2}du の形で例題が載ってました! しかも本の隅に私の書き込みが残ってました。 過去に解いたことがあるようです。 確かに、2重積分にして極座標変換で解いてました。 なので、No.3さんの回答を頼りに本の解き方で解こうとしました。 しかし! 教科書では範囲が∫[-∞, ∞]なので、答えが√(2π)になってるんですよね…。 そして、No.3さんの答えで一つだけ疑問に思ってた部分がπ <= θ <= (3/2)πでした。 (正直、書き間違えだと思ってました、すみません。) なるほど! 二つの積分の範囲が∫[-∞, 0]なので掛け合わせて、第3象限の180° <= θ <= 270°になってしまったんですね。 その角度はというとπ/2、なので極座標変換すると∫[0, π/2]になるんですね。 これで教科書の解き方でも解けるようになりました。 このヒントが無かったら、また質問してるところでした。 更に分かりやすいように丁寧にLaTexで書いて下さって、 本当にありがとうございました!

その他の回答 (2)

  • gamma1854
  • ベストアンサー率54% (287/523)
回答No.2

まず、 I =∫[-∞~0] e^(-u^2/2)du = ∫[0~∞] e^(-u^2/2)du . であり、I ^2 ={∫[0~∞] e^(-u^2/2)du }*{∫[0~∞] e^(-v^2/2)dv }. ゆえ、 D={(x, y) | x^2+y^2≦R^2, 0≦x, y≦0, R>0} として、 G[R] = ∫∫[D] e^{-(u^2+v^2)/2} dudv ... (*) を計算し、lim[R→∞] G[R] = pi/2 をえます。 -------------------- (*) はもちろん、極座標への変換により計算します。

futureworld
質問者

お礼

ご回答ありがとうございます。 コンセプトは掴むことができました。 2乗したものを考えてから2重積分を使い、極座標変換して、その結果の平方根を取るわけですね。 肝心の極座標への変換が無かったのが少し残念でした。 しかし、勉強になりました。 ありがとうございました。

  • musume12
  • ベストアンサー率63% (19/30)
回答No.1

>多分、置換積分だと思いますが解けません。  普通の置換積分ではなく極座標変換による重積分を使います。    重積分 極座標変換 無限積分 でググるといいと思います。

futureworld
質問者

お礼

ご回答ありがとうございます。 多分(いや間違いなく)、それだけのヒントでは解けていなかったと思います。(笑) 上の回答へのお礼でまた書きます。

関連するQ&A

  • 畳み込み積分のラプラス変換

    畳み込み積分      f * g = ∫[0,t] f(τ) g(t-τ) dτ のラプラス変換が式      L[f * g] = L[f(t)]L[g(t)] の性質を満たすことを示そう。 L[f * g] = ∫[0,∞] (f * g) e^(-st) dt      = ∫[0,∞] {∫[0,t] f(τ) g(t-τ) dτ} e^(-st) dt     ←ここから      = ∫[0,∞] f(τ) {∫[τ,∞] g(t-τ) e^(-st) dt } dτ      = ∫[0,∞] f(τ) {∫[0,∞] g(u) e^{-s(u+τ)} du } dτ   ←ここまで      : (これ以降は理解できました)      = L[f(t)]L[g(t)] ・・・という例が本に載っています。 途中をどうやって計算しているのかが分かりません。 自分で考えてみますと、      = ∫[0,∞] {∫[0,t] f(τ) g(t-τ) dτ} e^(-st) dt      = ∫[0,∞] f(τ) {∫[τ,∞] g(t-τ) e^(-st) dt } dτ の間は、内側と外側の積分を交換したみたいですね。 ただ、その際に      ∫[0,t]が外側に行って∫[0,∞]      ∫[0,∞] が内側に行って{∫[τ,∞] に変換されています。ここがまず分かりません。 次に      = ∫[0,∞] f(τ) {∫[τ,∞] g(t-τ) e^(-st) dt } dτ      = ∫[0,∞] f(τ) {∫[0,∞] g(u) e^{-s(u+τ)} du } dτ の間は      u = t-τ と置いて、      t = u+τ とも置いているようです。 でも、それらを適用しただけだと      = ∫[0,∞] f(τ) {∫[τ,∞] g(u) e^{-s(u+τ)} du } dτ と、∫[τ,∞]の開始点はτのままになってしまいますよね? なぜ、0になってしまったのでしょうか? 多変数の微積分のところで二つの積分を重積分にするのをやりましたが、すっかり忘れました。 復習の意味も込めて教えてください。お願いします。

  • 合成関数の積分方法

    久しぶりの積分でかなり忘れてるのでよろしくお願いします. I = ∮e^(-x^2)dx,D : 0≦x≦1についてですが, -1/2[e^(x^2)]D=(1-e)/2ってできますっけ? 最初置換積分で解こうとして, x^2=tと置き,x=√t(∵x≧0), dx = 1/(2√t)dt, 0≦t≦1より I = ∮(e^(-t)・1/2√t)dtとなったんですが,部分積分法で解けませんでした.

  • 積分について

    積分について ∫0⇢∞ e^-((a+jω)t)dtを積分したいのですが、 u=-((a+jω)t)を置換積分として行ってもうまくいきません。 dt/du=-1/a-1/jωとなるため、 (-1/a-1/jω)e^-((a+jω)t)となります。 答えは1/(a+jω)となります。 途中式をお願いいたします。

  • 置換積分法についてです。

    使いわけを教えてください。今自分が習っている内では置換積分法は2種類あります。 ひとつは、∫f(x)dx=∫f(g(t))g'(t)dt もうひとつは、∫f(g(x))g'(x)dx=∫f(u)du です。 このふたつをどう使いわけたらいいかがわかりません。どんな時に前者、どんな時に後者、という感じではっきりできませんか?ご回答よろしくお願いします。

  • 積分について

    ∫t・f(t-x)dtというものがあったとします。 このとき、f(t-x)は扱いにくいのでu=t-xとおくと ∫t・f(t-x)dt=∫(u+x)・f(u)duとなります。(積分区間は省略します。) そして∫(u+x)・f(u)du=∫(t+x)・f(t)dtという変形をよく見ますが、この変形はなぜ可能なのでしょうか? 途中までは理解できますが、最後にuをそのままtに変えています。 u=t-xとおいているのに、なぜ勝手にuをtに変えてよいのでしょうか? この手法は、積分関数で、両辺をxで微分する際によく使われるものです。

  • 不定積分ができません。

    ある数学の参考書に次のような記述があります。 √(1+U^2)の不定積分は U = (E^t - E^(-t))/2 と置いて置換積分法を使うのがもっとも賢明です。 そのとき、積分の根号の中は完全平方式となり、結果は ∫√(1+U^2)du = ( U√(1+U^2) + log(U + √(1+U^2)) )/2 になります。 とありますが、この答えを導くことが出来ません。(根号の中が完全平方式になるのは解ります。) わかりやすく解説していただけないでしょうか。 数式の表現が拙劣でわかりにくいかと思いますが、よろしくお願いします。

  • 部分積分.

     L ∫ {d/dx(E du/dx)+f}δudx=0  0 の部分積分をお願いします. ただし,  δu=0 u=0  E du/dx =T/A  (x=0) です.  

  • 置換積分のイメージ

    置換積分についての質問です。 数式の処理は出来ます。 ただ∫f(g(x))g'(x)dx=∫f(u)du [ただしu=g(x)] という置換積分の式についてイメージができません。 左辺はdxなのに右辺はduである理由も、なんとなくわかっているようなわかっていないような、すごく曖昧な理解しか出来ていません。 そこでこの置換積分の式についての理解を深めさせていただきたいです。 この数式の意味をなるべく言葉で教えて欲しいと思います。 よろしくお願いします。

  • この積分の求め方を教えて下さい。お願いします。

    こんにちは、式を打つことができなかったため、添付の通り、手書きで失礼します。 もともとは物理の問題だったのですが、答えを求める最終工程での積分でつまづいており、 何とか解法を教えていただけないかと思いました。 二問ありまして、両方とも式の基本的な骨格は似ているのですが、もしかしたら解法はことなるのかも知れません。 Q1は、「いつのまにやら」解けてしまいました。 u = (x^2 + a^2)として、置換積分を始めたところ、 インテグラルの中身が二つの関数、片方はx、もう片方は(x^2 + a^2)^(-3/2)でありまして、xが uをxについて微分したもので表せることに気付きました。つまりdu/dx = 2x したがって、xは(1/2) du/dx これをインテグラルの中に代入すると、du/dx とdxが中に存在することになり、duで表されてしまいました。すると後は、uについて積分してあげれば答えは出てしまいました。確かに求めた答えはあっているのですが、一体どういった定理・公式を使ったのか、偶然できただけなのか、解いた本人が理解しておりません。どうか、お教え頂ければと思います。 Q2は、途中でつまづいています。そのため、途中の経過も正しい道に進んでいるのかわからなくなってしまいました。基本的には置換積分を使っています。ところが、u = (x^2 + a^2)として置換作業をしようとしても、xが二乗であるため、シンプルにxをuの関数で表すことができません。 本来は、∫f(u) dx/du du と置換積分の公式に乗せたいところですが、dx/duがシンプルに求まりません。つまり、u = (x^2 + a^2)をuについて微分すると、1 = 2x dx/du + 0 となり、dx/duがuの関数に収まってくれません。このため、∫f(u) dx/du du = ∫u^(-3/2) (1/2x) duとなり、インテグラルの中身がまだ二つの文字が含まれ、ここで計算が止まってしまいました。どうか、解法のヒントを与えて頂ければと思います。 この文章や添付で式が見辛いことがあるかと思いますが、すみません。 その際はご指摘頂ければ書き直します。 以上の二点について、どうか宜しくお願い致します。

  • 指数分布・条件付確率

    「Xの分布=Yの分布=Exp(1)のとき、P(Y≧3X)を求めよ」 という問題についてですが、まず Xの確率密度関数:f(x)=e^(-x) (x>0) Yの確率密度関数:g(y)=e^(-y) (y>0) と表せます。 解答では、 P(Y≧3X) =∫[-∞~∞]P(Y≧3X|X=t)*f(t)dt =∫[0~∞]P(Y≧3X|X=t)*e^(-t)dt  (★) =∫[0~∞]P(Y≧3t)*e^(-t)dt    (▲) =∫[0~∞]{∫[3t~∞]g(u)du}*e^(-t)dt =∫[0~∞]{∫[3t~∞]e^(-u)du}*e^(-t)dt =1/4 となっています。 疑問なのは★→▲への計算なのですが、 条件付確率の条件が外れるということは、XとYが独立だということになります。 しかし、問題文の1行からはXとYが独立とは、私には読み取れないのです。 私が読み取れないだけで、独立という設定なのでしょうか? それとも、指数分布の性質により独立と判断できるのでしょうか?