• ベストアンサー
  • 暇なときにでも

置換積分

∫1/(2e^x+1)dxを t=2e^x+1として置換し積分すると log|2e^x/(2e^x+1)|となると思いますが 回答はlog|e^x/(2e^x+1)| 答えを微分すると どちらも被積分関数に戻ると思います 置換の仕方に数学的に 何か重要なミスあるのでしょうか? それ違うならこの方法のダメところ教えてください 多分バカな質問だと思いますが 教えてください

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数289
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>∫1/(2e^x+1)dx これは不定積分ですね。 ∫1/(2e^x+1)dx=log|2e^x/(2e^x+1)|+C =log|e^x/(2e^x+1)|+log 2+C ここで、log 2+C=C'と置けば ∫1/(2e^x+1)dx=log|e^x/(2e^x+1)|+C’ となりますね。 不定積分ではどちらも正解ということです。 定数分の差が確定しないため「不定」積分というわけですね。 定積分になれば、この定数分の差はなくなりますよ。 お分かりになりました?(当たり前のことですが。。。)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 よく分かりました。

関連するQ&A

  • 積分に関する疑問です

    積分∫(1/sqrt(x^2+1))dx は、log{x+sqrt(x^2+1)}+c ですが、この積分問題は、x+sqrt(x^2+1)=tとおいて置換積分しますね。 こんなことをどうして思いつくんだろう?と疑問に思うのです。 この原始関数 F(x) = log{x+sqrt(x^2+1)} 自体どこから出てくるものなのでしょうか。初めてこの関数を微分してみた人は、どこからこんな式を考え付いて微分してみたのでしょうか?  この log{x+sqrt(x^2+1)} という式は、きっと何か他の問題を解いている途中に出てきてたまたま微分したら、いい結果が出たのではないか、と思っています。  ご存知の方、教えてください。

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 置換積分法での解き方

    問題集を解いていますが、5つ分からない問題がありました。 置換積分法で求めた時の途中式~答えまでの流れを教えてください。 お手数ですが、宜しくお願いします。 (1)∫(0→1) (x + 2 / x + 1) dx       (t =x+1といた場合) (2)∫(1→e) {(log x)^2 / x } dx (t =log xといた場合) (3)∫(0→1) e^x { e^(x) + 1 } ^2 dx (t =e^(x) + 1といた場合) (4)∫(0→π/2)  cos^(3) (x) ・sin x dx (t =cos x といた場合) (5)∫(0→π/2)  cos x / {sin^(2)(x) + 1 } dx (t = sin x といた場合) 答え (1)1+ log2 (2)1/3 (3)1/3(e^3 + 3e^2 + 3e - 7) (4)1/4 (5)π/4

その他の回答 (1)

  • 回答No.1

単に、積分定数が違うだけですが。 log|2e^x/(2e^x+1)| = log2 + log|e^x/(2e^x+1)| ですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

助かりました。 ありがとございました。

関連するQ&A

  • 置換積分?

    (1)∫1/√(e^x+1)dx (2)∫1/x(3√x+1)dx ※3√はルート3乗根の意味です (1)はe^xをtとおいて計算してみたのですがうまく行かず さらに√(e^x+1)を丸ごとtとおいて計算したのですがどうしても 答えにたどり着けませんでした (2)は3√x+1とtとおいてみたのですが余計に複雑なってしまい そのほか多数試してのですがこちらもよくわかりませんでした それぞれ答えは (1)log(√(e^x+1)-1/√(e^x+1)+1) (2)3log(3√x/3√x+1) とのことですがよろしくお願いします また、積分計算の学習にわかりやすい本がありました 同時に教えていただけないでしょうか

  • 定積分

    次の曲線の長さを求めよ (1)y=(1/3)x^(3/2) (0≦x≦12) (2)y=x(2-x) (0≦x≦2) という問題なのですが、 (1)y´=(1/2)x^(1/2) 公式より 長さs=∫[0→12]√(1+{(1/2)x^(1/2)}^2)dx =∫[0→12]√(1+(1/4)x)dx となるんですが、この積分の仕方がわかりません。 お願いします。 (2)y´=2-2x 長さs=∫[0→2]√(1+{2-2x}^2)dx =∫[0→2]√(1+(4-8x+4x^2))dx =∫[0→2]√(4x^2-8x+5)dx =∫[0→2]√{((2x-2)^2)+1}dx t=2x-2とおくとdx=dt/2 x:0→2、t:-2→2 よって =∫[-2→2](1/2)√(t^2+1)dt 公式より =1/4[t√(t^2+1)+log(t+√(t^2+1))][-2→2] =1/4{ {-2√5+log(-2+√5)}-{2√5+log(2+√5)} } =1/4{-4√5+log(-2+√5)-log(2+√5)} となるんですが、答えは√5+1/2log(2+√5)です。 この計算であってますか。どうすれば、答えになるでしょうか? お願いします。

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

  • 微分から考える積分?

    積分の解き方で、微分して被積分関数になる式を考えてそれをもとに積分する・・・以下のようなもの ∫4x * sqrt(4-x^2) dx {(4-x^2)^3/2}' = -3x(4-x^2)^1/2 より ∫4x * sqrt(4-x^2) dx = -4/3(4-x^2)^3/2 がありますが、微分して被積分関数になる式の作り方が良く分からないのですが、何かやり方があるのでしょうか? また、この解き方を用いるのはどのような場合の積分でしょうか?

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

  • 不積分の問題で、解けないものがあるので教えていただきたいです。

    不積分の問題で、解けないものがあるので教えていただきたいです。 (1) ∫4-X/X(X-1)(X-2)dx →  logX^2|X-2|/|X-1|^3 (2) ∫X^2+8X-1/(X-1)(X+1)(X+3)dx  → log|{(X+1)^2|X-1|/(X+3)^2}| (3) ∫4/X^2(X+2)dx  →  -2/x+loglX+2/?l (4) ∫1/?(X+1)^2dx  →  1/x+1+log|X/X+1| (5) ∫X^2+9X/(X+1)(X-1)^2dx  →  -5/X-1+log|X-1|^3/(X+1)^2 (6) ∫4/X(X^2+4)dx  →  1/2log(X^2/X^2+4) (7) ∫3X^2-2X+2/(X-2)(X^2+1)dx  →  1/2log{(X-2)^4(X^2+1)} (8) ∫2/(X+1)(X^2+1)dx  →  1/2log{(X+1)^2/X+1}+arctanX (9) ∫(X+1)^2/X(X^2+1)dx  →  log|X|+2arctanX (10) ∫4X/X^4-1dx  →  log|X^2-1|/X^2+1 (11) ∫4/X^4-1dx  →  log|X-1/X+1|-2arctanX 矢印はさんで左が問、右が答えです。 問題数多くてすみません。プリントの中の何題かなのですが、どうしても答えにいきつかず 途中計算がわかりません。(有理関数の積分?するのかなとは思うのですが、答えがおかしくなってしまいます) 計算方法のわかる方、お手数ですが解答、もしくはヒントだけでもよろしくお願いいたします。

  • 2重積分の「置換積分」?

     I = ∬exp(x+y)dxdy ; 積分領域{(x,y)|0≦x≦1,0≦y≦1} という2重積分を、  t(x,y) = x+y と置き替え  ∂t/∂y = 1  0≦y≦1 ⇒ x≦t≦x+1 と思い  J(x) = ∫exp(t)dt ; 積分区間{t|x≦t≦x+1}  = {exp(1)-1}exp(x)  I = ∫J(x)dx ; 積分区間{x|0≦x≦1}  = {exp(1)-1}^2 のように定積分の置換積分の手法を用いて解いたら一応答えと合っていました。しかし、私としては、  ∂t/∂y = 1 ⇒ dt = dy のように考えている辺りがなんとなく間違っているような気がするのです。この問題だから偶然に答えが合っていたのでしょうか?もしくは、流れは正しくても、断りをもっと立てないといけないのでしょうか? パソコンでの数式の書き方に慣れていませんので、どうも見えにくくて申し訳ありませんが、ご教授のほどよろしくお願いしますm(_ _)m

  • 置換積分の問題

    √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか?

  • 積分について

    写真に添付している積分の問題を解いてほしいです. 極力,詳細な回答がほしいです. 回答できる問題のみの回答でも構いません. よろしくお願いします. 一応こちらにも問題を書きます. 次の積分を( )内の置換を利用して行え. 1. ∫( dx / ( (x^2-1)^3) ) ( (x-1) / (x+1) = t ) ( )内の置換によって,次の関数を積分せよ. 2. 1 / ( (x+5) √(x^2+x+1) ) ( x + (1/2) = (√3/2)tan t ) ( √(x^2+x+1) = x + t ) 3. ( 4-x^2)^(-3/2) ( x = 2sinθ ) ( (2-x)/(2+x) = t )