• ベストアンサー
  • 困ってます

部分積分の導き方・・・、

部分積分法を導くとき、積の微分の公式 { f( x )g( x ) } ′= f ′( x )g( x )+f( x ) g ′( x ) 、を使いますよね。 教科書には、両辺の不定積分を考えて、 ∫{ f( x )g( x ) } ′dx = ∫{ f ′( x )g( x )+f( x ) g ′( x ) } dx ・・・(1) になり、 f( x )g( x ) = ∫f ′( x )g( x )dx + ∫f( x ) g ′( x )dx・・・(2) と書いてあります。(1)から(2)へ式変形するとき、左辺は、f( x )g( x )+Cになると思うのですが、Cはどこへ消えたのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数107
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • sanori
  • ベストアンサー率48% (5664/11798)

こんばんは。 >>> 部分積分法を導くとき、積の微分の公式 (fg)’= f’g + fg’  を使いますよね。 はい。 >>> 教科書には、両辺の不定積分を考えて、 ∫(fg)’dx = ∫(f’g+fg’) dx ・・・(1) になり、 fg = ∫f’gdx + ∫fg’dx ・・・(2) と書いてあります。 はい。そうですね。 >>> (1)から(2)へ式変形するとき、左辺は、fg+Cになると思うのですが、Cはどこへ消えたのでしょうか? 右辺が不定積分なので、左辺に +積分定数 をつける意味がないんです。 ∫f’gdx の中からも別の定数が出てきますし、 ∫fg’dx の中からも、さらに別の定数が出てきます。 それら3つの定数同士を足したり引いたりして、結局1個の積分定数になります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 部分積分の積分定数

    いつもお世話になっています。 部分積分の公式は積の導関数  (fg)' = f'g + fg' の両辺を積分して変形すれば出てくると思うのですが、 そのとき  fg = ∫f'g dx + ∫fg' dx + C のように積分定数をつけなくてもいいのはなぜですか?

  • 部分積分の疑問

    部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。

  • tan の部分積分

    いつもお世話になっています。 tan x の積分をしたくて、新しく覚えた部分積分というのを使ってみると  ∫tan x dx = ∫(sin x)/(cos x) dx = ∫(-cos x)' (1/cos x) dx = (-cos x)(1/cos x) - ∫(-cos x) (sin x/cos^2 x) dx = -1 + ∫tan x dx と、おかしなことになりました。 部分積分の公式の元に戻って  (fg)' = f'g + fg' と考えると  f(x) = -cos x  g(x) = 1/cos x となって、左辺が定数の微分になるので  (-1)' = tan x - tan x だからあってます。 定数を f(x), g(x) に分解したあたりが怪しいような気がするのですが、 最初にやった部分積分の式で何をどうしたのがいけなかったのかが説明できません。 いったい何がだめだったのでしょうか? よろしくお願いします。

  • 部分積分

    問題に ∫(-∞→∞)(x*e^(-(x^2)/2))dx このような積分があり 解説には ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞)=0 というのがありました。 [-e^(-(x^2)/2)](-∞→∞)=0 この計算に問題はないのですが その前の ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞) の意味がわかりません。 部分積分をしようとしているのはわかるのですが、どのように変形すればいいのかいまいち理解できないのですが、ご教授よろしくお願いします。

  • 部分積分の仕方

    ∫1/{(a-x)(b-x)}の仕方が分からず解説を見たら画像のように部分積分をしたら求まるよ。 と書いてありましたが理解できませんでした。 一応統計とかで使う超簡単な部分積分の解釈は出来ているのですが どうして部分積分からこのような式に変形できるのかがわかりません。 たとえばxcosxとかなら x(sinx)'としてxsinx-∫1・sinxとかで求めるのが部分積分ですよね。 なんで(b-a)が外に出てるのかそれすら理解できてません。お恥ずかしいですが、わかりやすくご指導お願い申し上げます。

  • 部分積分の直感的な理解

    部分積分の公式を、関数の積の微分の公式から導くのではなく、 部分積分の公式そのものから直接的にすぱっと理解する方法はないでしょうか? 物理の計算とかで、部分積分を使う場面がよくありますが、「部分積分すると」という表現に出くわすと、妙にはぐらかされた気分になるのです。

  • 部分積分法について

    微分方程式の問題を解いているときに出てきた式 ∫(logt/t)×(1/t)dt を部分積分法で解くと (-1/t)logt+∫(1/t)(1/t)dt となるらしいのですが、自分で解くと ∫(logt/t)dt であることから解がlogtとなり、部分積分の公式に代入すると「+」よりも前の式が (1/t)logt というように「-」が付きません 以上の解き方は間違っているのでしょうか? 正しい解き方を教えてください

  • 偏微分、部分積分

    部分積分の公式として、 ∫f'(x)g(x)dx = f(x)g(x) - ∫f(x)g'(x)dx というのがありますが、このダッシュは偏微分を表しているのでしょうか? 勿論1変数なら偏微分もへったくれもないと思うのですが、今、 ∫∂f(x,y)/∂x g(x,y)dx という積分をしたいと思っているのですが、これを部分積分して、 f(x,y)g(x,y)-∫∂g(x,y)/∂x f(x,y)dx とすることは可能なのでしょうか?

  • 積分計算がわかりません

    微分方程式の問題で (x+y)dy/dx=3x+3y+1 の一般解を求めたいのですが 自分がわかった部分は Y=x+y・・・(1)とおいて 両辺をxで微分して dY/dx=1+dy/dx・・・(2) となるので(1)(2)から dY/dx=(4Y+1)/Yになって Y/(4Y+1)dY=dx で両辺を積分すれば求まると思ったのですが 左辺の積分がうまく出来ません また、ここまでの式変形がすでに間違えているのでしょうか

  • 部分積分

    ∫x^2exp(-x^2/2)dxの部分積分についてです。 ∫x^2(-1/x・exp(-x^2/2))dxについて積分すればいいと思うのですが この積分により求められる第二項が2∫exp(-x^2/2)dxになってしまい回答と合いません、解答によると第二項は∫exp(-x^2/2)dxになるようなのですが何度やってもどこで間違っているのかがわかりません。 どなたか詳しく教えていただけないでしょうか。