• ベストアンサー
  • 暇なときにでも

部分積分の積分定数

いつもお世話になっています。 部分積分の公式は積の導関数  (fg)' = f'g + fg' の両辺を積分して変形すれば出てくると思うのですが、 そのとき  fg = ∫f'g dx + ∫fg' dx + C のように積分定数をつけなくてもいいのはなぜですか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数255
  • ありがとう数8

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

部分積分に限らず、∫f'g dx とか∫fg' dx の中に積分定数が含まれているためではないでしょうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 自分では ∫f'g dx や ∫fg' dx も関数だから  F(x) = ∫f'g dx  G(x) = ∫fg' dx と書けるはずなので  fg = F(x) + G(x) + C のようにならないとだめなんじゃないかと思っていたのですが、 正しくは  F(x) + C_1 = ∫f'g dx  G(x) + C_2 = ∫fg' dx のようになっているので、すでに  fg = ∫f'g dx + ∫fg' dx    = F(x) + G(x) + (C_1 + C_2) となっているということですね。 ようやくなぞが解けました。 ありがとうございました。

関連するQ&A

  • 部分積分の導き方・・・、

    部分積分法を導くとき、積の微分の公式 { f( x )g( x ) } ′= f ′( x )g( x )+f( x ) g ′( x ) 、を使いますよね。 教科書には、両辺の不定積分を考えて、 ∫{ f( x )g( x ) } ′dx = ∫{ f ′( x )g( x )+f( x ) g ′( x ) } dx ・・・(1) になり、 f( x )g( x ) = ∫f ′( x )g( x )dx + ∫f( x ) g ′( x )dx・・・(2) と書いてあります。(1)から(2)へ式変形するとき、左辺は、f( x )g( x )+Cになると思うのですが、Cはどこへ消えたのでしょうか?

  • tan の部分積分

    いつもお世話になっています。 tan x の積分をしたくて、新しく覚えた部分積分というのを使ってみると  ∫tan x dx = ∫(sin x)/(cos x) dx = ∫(-cos x)' (1/cos x) dx = (-cos x)(1/cos x) - ∫(-cos x) (sin x/cos^2 x) dx = -1 + ∫tan x dx と、おかしなことになりました。 部分積分の公式の元に戻って  (fg)' = f'g + fg' と考えると  f(x) = -cos x  g(x) = 1/cos x となって、左辺が定数の微分になるので  (-1)' = tan x - tan x だからあってます。 定数を f(x), g(x) に分解したあたりが怪しいような気がするのですが、 最初にやった部分積分の式で何をどうしたのがいけなかったのかが説明できません。 いったい何がだめだったのでしょうか? よろしくお願いします。

  • 部分積分の疑問

    部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。

その他の回答 (1)

  • 回答No.2

まだ積分が残ってるから、書いてないだけ。 別に書いても問題ないが、 最終的に∫を計算し終えたときに、 まとめて1つの積分定数にするんだから、 書かなくても問題はない。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 書いた場合も  fg = ∫f'g dx + ∫fg' dx + C_0   = (F(x) + C_1) + (G(x) + C_2) + C_0   = F(x) + G(x) + (C_0 + C_1 + C_2) となって、C_0 + C_1 + C_2 をまとめて C とすればいいだけだと理解しました。 ありがとうございました。

関連するQ&A

  • 積分定数に関して、です。

    ∫f(x)dx(a~x) = F(x) - F(a) (aは任意の定数) --(1)  aを任意の定数とすればF(a)は積分定数、と某参考書にかいてありました。 ∫f(x)dx = F(x) + C (Cは積分定数) --(2) (1)と(2)のどちらをやっても同じというコトなのでしょうか? つまり、F(x) - F(a) = F(x) + C なのですか? しかし、たとえば、f(x) = x とすると、 ∫xdx(a~x) = (1/2)x^2 - (1/2)a^2 (aは任意の定数) この場合、-(1/2)a^2 <= 0 なので、(1)と(2)が同じだとすると、 C <= 0 となって、Cが任意の定数ではなくなってしまいます。 しかし、(1/2)x^2 + 5 だって、その各点xの接線の傾きがxという変化の 仕方をしているのですから、たしかにxの原始関数ですよね. 長々となってしまったんですが、結局聞きたいことは以下の通りです. ∫f(x)dx(a~x) (aは任意の定数) = ∫f(x)dx  なのでしょうか? 違うのであれば、それはナゼなのかを教えてください.

  • 部分積分

    問題に ∫(-∞→∞)(x*e^(-(x^2)/2))dx このような積分があり 解説には ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞)=0 というのがありました。 [-e^(-(x^2)/2)](-∞→∞)=0 この計算に問題はないのですが その前の ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞) の意味がわかりません。 部分積分をしようとしているのはわかるのですが、どのように変形すればいいのかいまいち理解できないのですが、ご教授よろしくお願いします。

  • 部分積分の仕方

    ∫1/{(a-x)(b-x)}の仕方が分からず解説を見たら画像のように部分積分をしたら求まるよ。 と書いてありましたが理解できませんでした。 一応統計とかで使う超簡単な部分積分の解釈は出来ているのですが どうして部分積分からこのような式に変形できるのかがわかりません。 たとえばxcosxとかなら x(sinx)'としてxsinx&#65293;∫1・sinxとかで求めるのが部分積分ですよね。 なんで(b-a)が外に出てるのかそれすら理解できてません。お恥ずかしいですが、わかりやすくご指導お願い申し上げます。

  • 部分積分の直感的な理解

    部分積分の公式を、関数の積の微分の公式から導くのではなく、 部分積分の公式そのものから直接的にすぱっと理解する方法はないでしょうか? 物理の計算とかで、部分積分を使う場面がよくありますが、「部分積分すると」という表現に出くわすと、妙にはぐらかされた気分になるのです。

  • 部分積分

    ∫x^2exp(-x^2/2)dxの部分積分についてです。 ∫x^2(-1/x・exp(-x^2/2))dxについて積分すればいいと思うのですが この積分により求められる第二項が2∫exp(-x^2/2)dxになってしまい回答と合いません、解答によると第二項は∫exp(-x^2/2)dxになるようなのですが何度やってもどこで間違っているのかがわかりません。 どなたか詳しく教えていただけないでしょうか。

  • 部分積分の問題

    すみません、下の積分の解き方を教えて頂きたいです。 ∫e^(x) cos(x) dx 部分積分で解くんだと思うのですが・・

  • 積分定数Cのが無い状態で成り立つ等式にてです。

    ∫{f(x)g(x)}’dx=f(x)g(x)+C(Cはある定数)は成り立ちますが、なんで画像のように積分定数:C無しで ∫{f(x)g(x)}’dx=f(x)g(x) が成り立っているんですか?

  • 部分積分がわかりません

    部分積分の問題で ∫log2x dx という問題がどうしても解けません。どのように解いていけば良いのでしょうか?

  • 部分積分.

     L ∫ {d/dx(E du/dx)+f}δudx=0  0 の部分積分をお願いします. ただし,  δu=0 u=0  E du/dx =T/A  (x=0) です.  

  • 部分積分? 置換積分?

    部分積分? 置換積分? ∫(√(K^2-x^2)/x)dx(Kは実数)の積分ですが、やはり部分積分でしょうか? よろしければ、細かい手順を教えていただけるとありがたいです。