- ベストアンサー
- 暇なときにでも
三次関数の問題
----------------------------------------------- 三次関数f(x)=x^3-(3/4)x , g(x)=ax^3+bx^2+cx+dがある 区間 -1≦x≦1 において、|g(x)|≦1/4である。 (1)h(x)=f(x)-g(x)とおくとき、h(-1),h(-1/2),h(1/2),h(1)と0との大小関係をそれぞれしらべよ (2)a=1のとき、すべてのxに対して、g(x)=f(x)が成り立つことを示せ ----------------------------------------------- それぞれ2問あります。 このうち(1)は解けたのですが、(2)でつまずきました。 (1)で利用したh(x)を利用するのかと思い、 h(x)=-bx^2-(3/4+c)x-d として、x=-1,-1/2,1/2,1の値をそれぞれ代入して不等式を作ったり また|g(0)=d|≦1/4からdの値の範囲を求めて・・・ などなど色々試行錯誤したのですが、どうも進みません。 どなたか、ヒントを教えていただけないでしょうか?
- raionzumanshon
- お礼率14% (28/188)
- 回答数1
- 閲覧数41
- ありがとう数0
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- R_Earl
- ベストアンサー率55% (473/849)
過去の質問を見ましたが、(1)の答えは h(-1)≦0 h(-1/2)≧0 h(1/2)≦0 h(1)≧0 でよいのでしょうか? だとしたらまずh(-1)≦0とh(1)≧0から -(c + 3/4) ≦ b + d ≦ (c + 3/4) が言えます。 この不等式は左と右がほとんど同じ形をしていますよね? 唯一違うのはプラスかマイナスかだけです。 この部分に着目すると、この不等式が成り立つのは 「(c + 3/4)が0以上」の時ですよね? でないと「正の数 ≦ 何らかの数 ≦ 負の数」という ありえない不等式になっちゃいます。 次にh(-1/2)≧0とh(1/2)≦0から (1/2)(c + 3/4) ≦ (1/4)b + d ≦ -(1/2)(c + 3/4) が言えます。 やはりこれも不等式の左と右が同じ形をしています。 ここにも(c + 3/4)が現れてますね。 最初に考えた不等式と比べやすくするため、両辺を2倍して (c + 3/4) ≦ (1/2)b + 2d ≦ -(c + 3/4) としておきます。 こちらも「正の数 ≦ 何らかの数 ≦ 負の数」という変な不等式にしないためには、 「(c + 3/4)は0以下」としなくてはいけません。 さて、「(c + 3/4)が0以上」と「(c + 3/4)は0以下」が同時に成り立つためには、 cの値をどうしないといけないでしょうか? これを考えるとcの値が一意に定まります。 ここで求めたcの値を2つの不等式 -(c + 3/4) ≦ b + d ≦ (c + 3/4) (c + 3/4) ≦ (1/2)b + 2d ≦ -(c + 3/4) に代入してあげると、bとdの値が求まると思います。
関連するQ&A
- 三次方程式の0との大小の比較は以下の解答で十分?
はじめまして。 ----------------------------------------------------- 三次関数f(x)=x^3-(3/4)x , g(x)=ax^3+bx^2+cx+dがある 区間 -1≦x≦1 において、|g(x)|≦1/4である。 h(x)=f(x)-g(x)とおくとき、h(-1),h(-1/2),h(1/2),h(1)と0との大小関係をそれぞれしらべよ ----------------------------------------------------- という問題がありました。 それぞれの値を代入して h(-1)≦0 h(-1/2)≧0 h(1/2)≦0 h(1)≧0 ということまではわかりました。 これを解答としていいのでしょうか? それともa,b,c,dの値にまで言及して、それぞれが不等号となるとき、等号となるときまできちんと場合分けするのが正しい解答といえるのでしょうか?
- ベストアンサー
- 数学・算数
- 【数II】関数決定の問題です
xについての3次関数f(x)は -f(-1)=f(-1/2)=-f(1/2)=f(1)=1 をみたす。 このときf(x)を求めよ。 ……………………………… という問題で、自分は三次関数をおいて、条件の値を代入していくめんどうくさい方法でf(x)=4x^3-3xと出したのですが 別解に 題意よりf(x)は奇関数だからf(x)=ax^3+bxとおいても一般性を失わない -f(1/2)=f(1)=1よりa,bについて二元一次連立方程式を解くと a=4,b=-3 よって f(x)=4x^3-3x とあったのですが 奇関数だとf(x)=ax^3+bxとおけるというのがなぜかわからないです。教えてください。 あと、たった2本の奇関数の条件だけで一般性を失わないなんて言って大丈夫なんですか?
- ベストアンサー
- 数学・算数
- 三次関数
三次関数f(x)=x^3+ax^2+bx+cはx=1で極大値1をとり、x=3で極小値をとる。このときa,b,cの値と極小値を求めよ。 という問題です。答えa=-6,b=9,c=-3,f(3)=-3 答えだすのは問題ないんですけど、丁寧な模範解答にこう書かれていました。 「y=f(x)がx=1,3で極値をとるならばf’(1)=f’(3)=0が成立します。(f’(1)=f’(3)=0をそれぞれ計算し、a,bの値をだした後)、 a,bの値を出した直後はまだ必要条件だから、実際に x=1,3の前後でf’(x)の符号変化が起きているどうかを確認しておくべきです。十分性の確認というやつですね」 そこで質問ですが、問題文に「x=1で極大値1をとり、x=3で極小値をとる。」とあるんだから、普通に前後で符号の変化が起こることが分かるのに、なぜわざわざ確認しないといけないんですか? 極値と、そこで傾きが0になる、は同値ではないことは理解しています。 だれかご教授お願いします!
- ベストアンサー
- 数学・算数
- 三次関数の問題です。教えて下さい。
3次関数f(x)=xの三乗-(a+3)xの二乗+3ax-2b(a,bは定数)があり、 f′(2)=-3を満たしている。 関数f(x)の極大値をM、極小値をmとする。M-2m=7であるときのbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。の部分 の考え方と解き方が分かりません・・ 詳しい解説を書いていただけると嬉しいです。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 微分の問題がわかりません
f(x)=x^3+ax^2+bx+c (a,b,c,dは実数) が (ⅰ)f(-x+d)+f(x+d)=2f(d) (ⅱ)f(d)=-11 (ⅲ)f(x)は x=-1 で 極値5 をとる を満たすとき、 (1)a,b,c,dの値 (2)区間 p≦x≦q におけるf(x)の値域が 5p≦f(x)≦5q となるように実数p,qの値を定めよ。ただし p<-1, p<q とする。 という問題なんですが、 abcdの値は似たような問題は解けるんですが この問題はdの三次関数が発生してうまく解けません。 あと(2)の解法もなかなか思いつきません。 解法わかる方いましたらお願いします。
- ベストアンサー
- 数学・算数
- 3次関数が極値をもつ必要十分条件
3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…
- 締切済み
- 数学・算数
- 2つの関数f(x)=x^4 -x、
g(x)=ax^3 +bx^2 +cx +dがf(1)=g(1)とf(-1)=g(-1)をみたすとき、積分∫[-1~1]{f(x)-g(x)}^2 dxを最小にするa、b、c、dの値を求めよ f(1)=g(1)とf(-1)=g(-1)からa+c=-1、b+d=1 f(x)-g(x)=x^4 -ax^3 -bx^2 +ax +b -1 なのは分かりますが、これを二乗して積分しようとすると非常に長い式になり、また、解くことも出来ません 解き方を教えてください
- ベストアンサー
- 数学・算数