• ベストアンサー
  • 困ってます

【数II】関数決定の問題です

xについての3次関数f(x)は -f(-1)=f(-1/2)=-f(1/2)=f(1)=1 をみたす。 このときf(x)を求めよ。 ……………………………… という問題で、自分は三次関数をおいて、条件の値を代入していくめんどうくさい方法でf(x)=4x^3-3xと出したのですが 別解に 題意よりf(x)は奇関数だからf(x)=ax^3+bxとおいても一般性を失わない -f(1/2)=f(1)=1よりa,bについて二元一次連立方程式を解くと a=4,b=-3 よって f(x)=4x^3-3x とあったのですが 奇関数だとf(x)=ax^3+bxとおけるというのがなぜかわからないです。教えてください。 あと、たった2本の奇関数の条件だけで一般性を失わないなんて言って大丈夫なんですか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数81
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>… 奇関数だとf(x)=ax^3+bxとおけるというのがなぜかわからない … 「3 次関数 f(x)」とは、3 次多項式のことらしい。  f(x) = ax^3 + cx^2 + bx + d   …(1) …なので f(x) を、偶関数部 e(x) と奇関数部 d(x) とに和分解する。  偶関数部 e(x) とは、e(-x) = e(x) を満たす部分  奇関数部 e(x) とは、e(-x) = - e(x) を満たす部分 だから、  f(x) = e(x) + d(x)   …(2)  f(-x) = e(-x) + d(-x) = e(x) - d(x)   …(3) (1) ~ (3) により、  e(x) = {f(x) + f(-x)}/2   = {(ax^3 + cx^2 + bx + d) + (-ax^3 + cx^2 - bx + d)}/2   = cx^2 + d  d(x) = {f(x) - f(-x)}/2 =   = {(ax^3 + cx^2 + bx + d) - (-ax^3 + cx^2 - bx + d)}/2   = ax^3 + bx 要するに、偶 / 奇次数部分に分けるだけなのですけど…。     

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧な解説ありがとうございました

関連するQ&A

  • 微分における四元一次連立方程式

    【問】x=1で極小値4をとり,x=2で極大値5をとる三次関数F(x)を求めよ。 という問題で,私は F(x)=Ax~3+Bx~2+Cx~2+d F'(x)=3Ax~2+2Bx+C において F(1)=A+B+C+d=4 F'(1)=3A+2B+C=0 F(2)=8A+4B+2C+d=5 F'(2)=12A+4B+C=0 と、でてきました。この四元一次連立方程式の解放を教えてください。

  • 関数決定問題について疑問です

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極小値0をとり、x=2で極大値4をとるようなa,b,c,d,の値を求めよ。の問題で解き方は分かるのですが、解説のところでf'(0)=0,f'(2)=0,f(0)=0,f(2)=4は必要条件であって逆を調べる必要があると書かれているのですが、3次関数の場合2つの条件f'(0)=0,f'(2)=0があるので必ず極値は存在する、よって逆を調べる必要がないような気がするのですがどうなんでしょうか?それと 次の条件を満たす3次関数f(x)を求めよ。f'(2)=3,f'(1)=-2,f(1)=1,f(2)=1,という問題では逆を調べる必要があると書かれていませんでした。なぜこっちの問題だと逆を調べる必要はないのですが?わからないので教えてください             

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • 3次関数と直線が接する場合、重解をもつ証明

    数学の問題で、3次関数と直線が接するとき、連立方程式を立てて重解を持つことになるというのが、特に詳しい証明もなく使われているのですが、なぜこう言えるのでしょうか?2次関数ならば直線と接する場合、解が1つしかないということから、すぐに重解をもつことが条件となることが分かりますが、3次関数の場合、接するならば、重解をもつということの証明をおしえてください。よろしくお願いします。

  • f`(1)=f`(-1)=1 , f(1)=0, f(-1)=2

    f`(1)=f`(-1)=1 , f(1)=0, f(-1)=2 上記の条件を満たす3次関数 f(x) を求める問題について質問をします。 f(x)= ax^3 +bx^2 + cx +d (a≠0) とおいて、 与えられた数字をそれぞれ代入し、連立をさせれば答えを求めることができるのはわかっています。 しかし、より効率よく問題を解くためのテクニック的なものがあれば教えてほしいです。 (代入や連立の過程などで) 数学が得意な方など、よろしくお願いします。 ちなみに、この問題の答えを求めると、 f(x)=x^3 -2x +1 となりました。

  • 2次不等式の解から係数決定 : a<0って要る?

    2次不等式 ax^2 + bx + 4 > 0 の解が -1/2 < x < 4 であるとき、定数 a, b の値を求めよ。 ・・・という、2次不等式の解から係数決定の問題について質問です。 まず、本に載っている解答を書きます。 ################################################## 題意を満たすための条件は、2次関数 y = ax^2 + bx + 4 のグラフが、-1/2 < x < 4 の範囲でx軸より上側であることである。 すなわち、このグラフが上に凸の放物線で、2点(-1/2, 0), (4, 0) を通ることである。したがって、 a < 0 ・・・(1) a(-1/2)^2 + b(-1/2) + 4 = 0 ・・・(2) a・4^2 + b・4 + 4 + 0 ・・・(3) (2)から a - 2b + 16 = 0 (3)から 4a + b + 1 = 0 この2式を連立して解くと、 a = -2, b = 7 これは(1)を満たす。■ ################################################## 自分の場合、いきなりax^2 + bx + 4 > 0 のxに -1/2 と 4 を代入して、連立不等式を作って解き、a = -2, b = 7 を得ました。 正直な話、上に凸か下に凸かなんて、まったく考えていませんでした。考えなくとも、式どおりに代入すれば、自ずと出てくるでしょうに・・・。 ということで、この問題に「 a < 0 ・・・(1) 」の条件って本当に必要ですか? もし必要であるならば、「 a < 0 ・・・(1) 」の条件がなかった場合に起こりうる誤解答を教えてください。 この問題を少々改変しても構いません。では、よろしくお願いします。

  • 連立方程式の解と定数a

    連立方程式の解と定数a x、yの連立方程式 ax+by=9 bxーay=ー2 の解がx=4、y=ー1となるaの値を求めよ この問題はx=4,y=-1を代入してaを求めて解くと思いますが、 これは連立方程式の解がx=4,y=-1となるための必要条件じゃないんですか? つまりといた後にそのaで確かに(4,-1)(のみ?)が解となるか確かめる必要があるんじゃないですか? 数学はまったく苦手なので質問がまとはずれでしたらお知らせください。よろしくお願いします

  • 微分積分の質問です。

     3次関数f(x)=x^3+ax^2+bx+cはx=1およびx=-3で極値をとり、極小値は-5であるものとする。  (1)a,b,cの値を求めよ。  (2)点(0,c)で曲線y=f(x)に接する接線の方程式を求めよ。  (3)(2)で求めた接線と曲線y=f’(x)で囲まれた図形の面積を求めよ。  私は(1)は、f(x)は右肩上がりの3次関数だからf(1)=-5、また、題意よりf’(1)=0、f’(-3)=0で考えてa=-15/4,b=9/2,c=-27/4となりました。  (2)は、(1)で求めたものをf(x)に当てはめて、そのf(x)を微分し・・・と 接線はy=(9/2)x-27/4となりました。  解答が省略されていてこれらの解があっているのかは、分かりません。  (3)は答えが{37√(37)}/2となっていたのですが、私の答えとは違っていて・・・。  (1)(2)からまちがっているのか、(3)を間違ったのかも分からないのですが、教えていただけると幸いです。

  • 3次関数と放物線が1点で接するときについて

    C: f(x)=x^3-x および g(x)=x^2+k (k>0) が接するとき、kの値を 求めよという問題では x=tで接するとして f'(t)=g'(t) かつ f(t)=g(t) -(*) から、t,kの連立方程式を解くという解法以外に、計算量を省くことのできる別の解法があるのでしょうか? 2つの放物線が接するときなら、連立して(判別式)=0がありますが 3次関数と放物線での別解を探しています。 以前、本かネットで(*)の解法より計算量の少なくなる別解が書いて あるのをどこかで見たような気がするのですが、いくら探しても 見つからないので質問させていただくことにしました。 どうぞよろしくお願いします。

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

専門家に質問してみよう