• ベストアンサー
  • すぐに回答を!

積分

数IIの問題です。 xの3次関数f(x)=ax^3+bx^2+cx+dが、3つの条件、 f(1)=1、f(-1)=-1、∫[-1→1](bx^2+cx+d)dx=1 を全て満たしているとする。 I=∫[-1→1/2]{f´´(x)}^2dx を最小にするものを求め、その時のIの値を求めよ。 ただし、f´´(x)はf´(x)の導関数をあらわす。 この問題の解法が解りません。 どなたか教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数40
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

(1)3つの条件からb、dを求められる (2)-i a≠0のとき f"(x)=6ax+2b bは求められているので、aの2次式と考えると平方完成によって最小値を求められる (2)-ii a=0のとき f"(x)=2b    以下同様 i,iiを比べて小さい方が最小。#1の仰るように、問題文そのままに代入していけば解けます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 第3次導関数は,何を表していますか? 

    a,b,c,d を 0 でない実数として,y=f(x) を3次以上の多項式、例えば y=f(x)=ax^3+bx^2+cx+d のとき,上式を微分した導関数 y'=f'(x) は,曲線の接線の傾きを表し、更に微分した第2次導関数 y"=f"(x) は,曲線の一部を円と見なした曲率円のほぼ曲率を表していますが、第3次導関数は,曲線の何を表していますか? 

  • 定積分

    明日からテストで勉強していたんですが、定積分の所でつまった高3です。 f(0)=0,f(1)=1を満たす2次関数f(x)のうちで、 S(1から0の範囲){f(x)}^2dxを最小にするものを求めよ f(x)=ax^2+bx+cとおいて c=0,a+b+c=1までは分かるんですがそこから どう考えればいいのか分かりません><

  • 2つの関数f(x)=x^4 -x、

    g(x)=ax^3 +bx^2 +cx +dがf(1)=g(1)とf(-1)=g(-1)をみたすとき、積分∫[-1~1]{f(x)-g(x)}^2 dxを最小にするa、b、c、dの値を求めよ f(1)=g(1)とf(-1)=g(-1)からa+c=-1、b+d=1 f(x)-g(x)=x^4 -ax^3 -bx^2 +ax +b -1 なのは分かりますが、これを二乗して積分しようとすると非常に長い式になり、また、解くことも出来ません 解き方を教えてください

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

問題に書いてあることをそのまま実行する.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 定積分

    I=∫[-1~2](ax-1)^2dxを最小にするaの値と、 最小値を求めよ。 という問題がわかりません。 合っているかはわからないのですが、 I=∫[-1~2](a^2x^2-2ax+1)dx =a^2∫[-1~2]x^2dx-a∫[-1~2]2xdx+∫[-1~2]dx ここまでやってみました。 最小値だから、このあと平方完成をするのだと思うんですが、 やり方がわかりません(;_;)。 よろしくおねがいします

  • 次の式の積分方法を教えて下さい。

    f(x)=(-ax^3+cx)/{(ax^2+bx+c)^2} が与えられているとき ∫f(x)dx=F(x)+C となるF(x)の求め方を教えてください。

  • (数II)定積分の問題について。

    問、次の3つの等式を満足する2次関数f(x)を求めよ。 ∫[-1→1]f(x)dx=1 ∫[-1→1]xf(x)dx=0 ∫[-1→1]x^2f(x)dx=1 ・・・・・・・・・・という問題で、 f(x)=ax^2+bx+c (ただし、aキ0) とおいて求めると、 b=0とわかったのですが、a,cの求め方がよくわかりません。 そこの所を教えてください。よろしくお願いします。

  • 数II積分の問題を教えて下さい。

    以下の問題の解法をお願いします。 関数f(x)を x≦0のとき、f(x)=-27x x>0のとき、f(x)=16x^3と定義する。 tが0≦t≦1の範囲を動くとき、S(t)=∫(t-1~t)f(x)dxの最小値と、 そのときのtの値を求めよ。 お願いします。

  • 定積分の漸化式の問題

    f(x)を[0,∞)上の連続関数 n≧2なる自然数に対し、 F_n(x)={∫[0→x] f(u) (x-u)~(n-1) du }/(n-1)! とします。 このF_n(x) の導関数を求めたいのですが、計算が煩雑になってうまく求められません。 一応答えの予想としてはd/dx(F_n(x))=F_(n-1) (x) 、つまりパラメータnのときのFの導関数はn-1のときのFに等しい、だと考えています。

  • 積分の問題から2題です

    (1) ∫cosx dx (xは0からπ/2の閉区間) (2) f(x)=(3x+1)^5 の導関数 ---------------------------------------------- (1)は解けませんでした (2)1/6(3x+1)^6で正解ですか?定数項の+Cを書かないとダメですか? よろしくお願いします。

  • 関数決定問題について疑問です

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極小値0をとり、x=2で極大値4をとるようなa,b,c,d,の値を求めよ。の問題で解き方は分かるのですが、解説のところでf'(0)=0,f'(2)=0,f(0)=0,f(2)=4は必要条件であって逆を調べる必要があると書かれているのですが、3次関数の場合2つの条件f'(0)=0,f'(2)=0があるので必ず極値は存在する、よって逆を調べる必要がないような気がするのですがどうなんでしょうか?それと 次の条件を満たす3次関数f(x)を求めよ。f'(2)=3,f'(1)=-2,f(1)=1,f(2)=1,という問題では逆を調べる必要があると書かれていませんでした。なぜこっちの問題だと逆を調べる必要はないのですが?わからないので教えてください             

  • 微分を偏微分するには?

    たとえば以下のような式があります。     y(x) = ax^2 + bx + c このとき、yの導関数を、yで微分した値、つまり次式はどのように計算すればよろしいのでしょうか? ∂(dy/dx)/∂y = ? どなたかよろしくお願いします。

  • 微分の問題がわかりません

    f(x)=x^3+ax^2+bx+c (a,b,c,dは実数) が (ⅰ)f(-x+d)+f(x+d)=2f(d) (ⅱ)f(d)=-11 (ⅲ)f(x)は x=-1 で 極値5 をとる を満たすとき、 (1)a,b,c,dの値 (2)区間 p≦x≦q におけるf(x)の値域が 5p≦f(x)≦5q となるように実数p,qの値を定めよ。ただし p<-1, p<q とする。 という問題なんですが、 abcdの値は似たような問題は解けるんですが この問題はdの三次関数が発生してうまく解けません。 あと(2)の解法もなかなか思いつきません。 解法わかる方いましたらお願いします。

  • 第5次導関数の問題です

    この解き方であっているか、わかる方よろしくお願いします。 関数f(x)=x^5+2mp第5次導関数f^(5)(x)を求めよ。 (f^(5)(x)の(5)の部分だけが指数です。) 答え 1次導関数:5x^4 2次導関数:20x^3 3次導関数:60x^2 4次導関数:120x 5次導関数:120 よって、f^(5)(x)=120