• ベストアンサー
  • すぐに回答を!

関数決定問題について疑問です

3次関数f(x)=ax^3+bx^2+cx+dがx=0で極小値0をとり、x=2で極大値4をとるようなa,b,c,d,の値を求めよ。の問題で解き方は分かるのですが、解説のところでf'(0)=0,f'(2)=0,f(0)=0,f(2)=4は必要条件であって逆を調べる必要があると書かれているのですが、3次関数の場合2つの条件f'(0)=0,f'(2)=0があるので必ず極値は存在する、よって逆を調べる必要がないような気がするのですがどうなんでしょうか?それと 次の条件を満たす3次関数f(x)を求めよ。f'(2)=3,f'(1)=-2,f(1)=1,f(2)=1,という問題では逆を調べる必要があると書かれていませんでした。なぜこっちの問題だと逆を調べる必要はないのですが?わからないので教えてください             

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数135
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

x=aの近傍で導関数f'(x)が存在するとき x=aで極値をもつならば,f'(a)=0 は成立しますが,f'(a)=0だからといって そこで極値をとるとは限りません 例:f(x)=x^3 f'(0)=0ですが,x^3はx=0で極値はとりません. したがって,必要条件しか求めていないので 十分性の確認が必要です 後半の問題では,条件を満たす値を ただ求めるだけで,一般には 四元一次連立方程式の方程式を解くことと 同値であって必要十分であるからです もっとも解の吟味をすることは重要なので 検算の意味もかねてチェックしても 全く問題ありません

共感・感謝の気持ちを伝えよう!

質問者からのお礼

遅くなりましたすいません。理解できました。有難うございました

関連するQ&A

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • 三次関数

    三次関数f(x)=x^3+ax^2+bx+cはx=1で極大値1をとり、x=3で極小値をとる。このときa,b,cの値と極小値を求めよ。 という問題です。答えa=-6,b=9,c=-3,f(3)=-3 答えだすのは問題ないんですけど、丁寧な模範解答にこう書かれていました。 「y=f(x)がx=1,3で極値をとるならばf’(1)=f’(3)=0が成立します。(f’(1)=f’(3)=0をそれぞれ計算し、a,bの値をだした後)、 a,bの値を出した直後はまだ必要条件だから、実際に x=1,3の前後でf’(x)の符号変化が起きているどうかを確認しておくべきです。十分性の確認というやつですね」 そこで質問ですが、問題文に「x=1で極大値1をとり、x=3で極小値をとる。」とあるんだから、普通に前後で符号の変化が起こることが分かるのに、なぜわざわざ確認しないといけないんですか? 極値と、そこで傾きが0になる、は同値ではないことは理解しています。 だれかご教授お願いします!

  • 3次関数の微分の問題

    こんにちは。 数研出版「ベーシックスタイル三訂版」の163、164の問題です。 解説が無いので分からず困っています。 [163] 3次関数f(x)=x^3-ax^2が、0<x<1で極値をもたないための実数aに関する条件を求めよ。 [答え] a≦0、3/2≦a [164] 関数f(x)=1/3x^3-a^2x-1(a>0)の極大値と極小値との差が9/16となるaの値を求めよ。 [答え] a=5/3 以上です。 どちらか一方だけでもかまいませんので、分かるかたよろしくお願いします。

  • 三次関数の問題です。教えて下さい。

    3次関数f(x)=xの三乗-(a+3)xの二乗+3ax-2b(a,bは定数)があり、 f′(2)=-3を満たしている。 関数f(x)の極大値をM、極小値をmとする。M-2m=7であるときのbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。の部分 の考え方と解き方が分かりません・・ 詳しい解説を書いていただけると嬉しいです。 よろしくお願いします。

  • 三次関数の問題

    三次関数についての問題です。 f(x)=1/3x^3+ax^2+bx+cにおいて (1)f(0)=0 f´(0)=2 (2)x=tで極大になり、また   x=2tで極小になる。 この二つを満たす時、 a・b・c・tの値と、f(x)の極値を求めなさい。 分かるのはtのみで、他が全く分かりません。 判明したtから他の値も求まるのでしょうか。 分かる方いましたら、ヒントでかまいませんので教えて ください。

  • <微分> 3次関数の微分の問題

    3次関数f(x)=ax^3+bx^2+cx+dがx=1で極小値-1/12をとり、x=2で極大値1/12をとる。 定数a,b,c,dを求めよ という問題です。 f'(x)=3ax^2+2bx+c として、 f'(1)=0 f'(2)=0 f(1)=-1/12 f(2)=1/12    この4つの式からabcdを使った式を出したのですが、 どのように変形すれば答えが出るのでしょうか? 教えていただければ幸いです。

  • 三次関数の導出

    次の問題について ある三次関数について、極小値は(4,-53)、極大値の座標が(-2,55)であることが分かっています。 三次関数の式を求めよ (元は違う問題なので、答えが求まらないかもしれません) 関数をf(x)=ax^3+bx^2+cx+dとおき、 f'(x)=0より、f'(x) = 3ax^2+2bx+c = (x-2)(x-4) = 0とおきました。 条件から変曲点が(1,1)ですから、これも利用して計算しようとしているのですが、 a,b,c,dの値が一定に定まりません。 上記条件付けに何か間違っているところはあるでしょうか。

  • どなたか教えて頂きたいですm(__)m

    (1) f(x)=x^(3)-(3/2)x^(2)-6x+1の極大値,極小値を求め,y=f(x)のグラフを描け。 (2) g(x)=ax^(3)+bx^(2)+cx+dはx=-2で極大値2, x=1で極大値1をとる。このとき,定数a,b,c,dを求めよ。 解き方を詳しく教えて頂けるとうれしいです。よろしくお願いいたしますm(__)m

  • 数学の質問です

    3次関数f(x)=3x^3+ax^2+bx+c が常にf(-x)=-f(x)を満たし、また、f(x)には極大値と極小値が存在してその差が3√2であるとする。 (1)a b c? (2)点(t,f(t))における曲線y=f(x)の接線Lの方程式を求めよ (3)y=f(x)とLの共有点のうち、接点以外の座標をtで表せ。ただし、t≠0 極大値と極小値をα、βでおいて、解の公式を使ってやってみてもうまく3乗を消したりできず、a,b,cのどれも答えを出せません;; 根本的に間違ってる気がするので 詳しい解き方と解説宜しくお願いしますm(__)m