• ベストアンサー
  • 困ってます

3次関数f(x)=x^3+ax^2+bxの

3次関数f(x)=x^3+ax^2+bxは極大値と極小値をもち、 それらを区間-1≦x≦1内でとるものとする。 この条件を満たす実数の組(a,b)の存在範囲を図示せよ。 教えてください。 一度質問が出てる問題なのですが、 解説で 題意から f'(x)=0 が -1≦x≦1 に相異2実数解をもてばよいので -1<-(1/3)a<1 かつ f((-1/3)a)<0 かつ f'(-1)≦0 かつ f'(1)≦0 ⇔ -3<a<3 かつ b<(1/3)a^2 かつ b≧2a-3 かつ b≧-2a-3 となっているのですが、 軸の x座標を 示している条件 -1<-(1/3)a<1 はどこからでてくるのでしょうか。 この条件の意味するものはなんでしょうか。 それと、どうやって思いつけばよいのでしょうか? ( その他の条件 b<(1/3)a^2 ・・・ 導関数が解を2つもたなければならない。 かつ b≧2a-3 ・・・極大値 x=-1にあるとき かつ b≧-2a-3 の ・・・極小値が x=1 にあるとき) はわかるのですが・・・・・・ よろしくお願いいたします

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数457
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • suko22
  • ベストアンサー率69% (325/469)

f'(x)=3x^2+2ax+bが-1≦x≦1で2つの実数解を持てばよいというのは大丈夫なんですね。 これを満たすグラフを書いてみればいいです。(添付図参照) すると、x軸と2つの交点を持つことより、D>0(または頂点のy座標が<0と考えてもいいです。またはf'(-a/3)<0と考えてもいいです。) それと、 f'(-1)≧0かつf'(1)≧0 これだけでは不十分で、軸を定めないといけません。 軸はx=-a/3とでます。 これが-1<-a/3<1を満たしていなければ添付図のようになりません。(軸がこれを満たしていないと例えば添付図の左下のようなグラフを排除できません) この条件の思いつき方ですが、y=f'(x)がどういうグラフになれば条件を満たすかを書いて、そのグラフになる条件を見つけ出します。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど。軸の条件がないと 不十分なことがわかりました。 ありがとうございます。

関連するQ&A

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値&#65293;6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値&#65293;6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=&#65293;6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • xの3次方程式 x^3 -3ax^2 +3a^3 +3a -2a =

    xの3次方程式 x^3 -3ax^2 +3a^3 +3a -2a = 0 が異なる3つの実数解をもつためのaの値の範囲(ただし、a>0とする)の求める問題について。 f(x)= x^3 -3ax^2 +3a^3 +3a -2a とおき。 f`(x)= 3x^2 -6ax = 3x(-2a) 0<a より 0<2a 以上より、次の増減表を求めました。 x :…| 0 |…| 2a |… f`(x):+| 0 |&#65293;| 0 |+ f(x) :↑|極大|↓|極小|↑ ※↑は斜め右上上がり、↓は斜め右下下がりを示す。 ここまで、求めたのですがこの後どうすればよいのかよく分りません。 解までの手順を分りやすく説明していただけるとありがたいです。 よろしくお願いします。

  • 3次関数について

    一般に3次関数で、3個の実数解をもつための条件は関数f(x)が極値をもち、極大値と極小値が異符号となること。 問題  x^3+px+q=0 (p,qは実数)が3個の実数解をもつための必要十分条件を求めよ。 この問題に対して、私はx=sのとき極大値をもち,x=tのと極小値を持ち f(s)>0,f(t)<0  (s<t) ならばいいと判断したのですが、 教科書では f(s)×f(t)<0という条件をもとに,答えをだしているのですが、 x^3の係数は正なので、なぜそのような条件になるか分からないのですが、分かる方教えてください。

  • f(x)=ax^3 + bx^2 -12x + 5 が、x=-1で極大

    f(x)=ax^3 + bx^2 -12x + 5 が、x=-1で極大値をとり、x=2で極小値をとる場合 f(1)の値はいくらか? f'(x)=3ax^2 + 2bx -12 にしたと思うのですがこの後がどうすればよいのかすっかり忘れてしまいました。 どの様に解いていくのでしょうか? 解りやすく教えて頂けないでしょうか?

  • <微分> 3次関数の微分の問題

    3次関数f(x)=ax^3+bx^2+cx+dがx=1で極小値-1/12をとり、x=2で極大値1/12をとる。 定数a,b,c,dを求めよ という問題です。 f'(x)=3ax^2+2bx+c として、 f'(1)=0 f'(2)=0 f(1)=-1/12 f(2)=1/12    この4つの式からabcdを使った式を出したのですが、 どのように変形すれば答えが出るのでしょうか? 教えていただければ幸いです。

  • 第3次導関数は,何を表していますか? 

    a,b,c,d を 0 でない実数として,y=f(x) を3次以上の多項式、例えば y=f(x)=ax^3+bx^2+cx+d のとき,上式を微分した導関数 y'=f'(x) は,曲線の接線の傾きを表し、更に微分した第2次導関数 y"=f"(x) は,曲線の一部を円と見なした曲率円のほぼ曲率を表していますが、第3次導関数は,曲線の何を表していますか? 

  • 微分の問題

    3次関数f(x)=x^3-ax^2+ax-3aがあり、g(x)=f(x)-xf´(x)とする。ただしaを定数とする。 (1)g(x)を求めよ。 g(x)=-2x^3+ax^2-3a (2)a>0とする。g(x)の極大値、極小値をaを用いて表せ。 極大値(5/27)a^2-3a 極小値-3a (3)a≠0とする。方程式g(x)=0が異なる2つの実数解をもつとき、定数aの値とその時の実数解を求めよ。 (1)(2)はあってますか? また、この問題の(3)を教えてください。

  • a実数 f(x)=x^3-3ax とおく。

    a実数 f(x)=x^3-3ax とおく。 (1)f(x)=tが異なる3個の実数解をもつためには、a,tが満たす    条件を求めよ。    これは、y=f(x)とy=tの交点が3個になるときを考えて、    答えは、a>0,-2a√a<t<2a√a (2)g(x)=f(f(x))とおく。g(x)=0が異なる9個の実数解をもつような    aの範囲を求めよ。        (1)から、f(t)=0 ,t=x^3-3ax これを満たすxが9個あることを考えれば    よいところまでは分かりましたが、このあとをどうしたらいいかわかりません。    よろしくおねがいします。   

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

  • 高校数学です。f(x)=ax^2+bx+cにおいて

    2次方程式f(x)=0の解がx=α、βのとき(つまりf(α)=0、f(β)=0)のとき、 f(x)=a(x-α)(x-β)と式変形が出来る。 また ax^2+bx+c≦0においても、ax^2+bx+c=0の解がx=α、βのとき、a(x-α)(x-β)≦0と式変形ができる。 という公式はありましたっけ?? ご回答よろしくお願いします。