• 締切済み
  • すぐに回答を!

微分のこの問題誰か解説してください!

微分の問題なんですが、どれだけ考えても、答えに辿りつかないので、誰か解説してください;; 一応答えは分かるんですが、解説がのってないので・・・。 問題 3次関数f(x)=ax3+bx2+cx+d が次の条件すべて満たすように、定数a,b,c,d,の値を求めよ。 f(1)=1 f(-1)=-f(x)  f(x)は-1/2で極大値をとる。 ちなみに、答えはa=4 b=0 c=-3 d=0 です。  自分は a+c=1 b+d=0 3/4a-b+c=0 まで分かったんですが・・・ 本当困ってます。試験がもうすぐなので;; 救世主をお待ちしております。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数82
  • ありがとう数1

みんなの回答

  • 回答No.3

先ほどの回答、一部間違えてました。  f'(1/2)=3a(1/2)^2+2b(1/2)+c=0 → 3a/4+b+c=0 (3) を  f'(-1/2)=3a(-1/2)^2-2b(1/2)+c=0 → 3a/4-b+c=0 (3) としてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • <微分> 3次関数の微分の問題

    3次関数f(x)=ax^3+bx^2+cx+dがx=1で極小値-1/12をとり、x=2で極大値1/12をとる。 定数a,b,c,dを求めよ という問題です。 f'(x)=3ax^2+2bx+c として、 f'(1)=0 f'(2)=0 f(1)=-1/12 f(2)=1/12    この4つの式からabcdを使った式を出したのですが、 どのように変形すれば答えが出るのでしょうか? 教えていただければ幸いです。

  • 三次関数の問題です。教えて下さい。

    3次関数f(x)=xの三乗-(a+3)xの二乗+3ax-2b(a,bは定数)があり、 f′(2)=-3を満たしている。 関数f(x)の極大値をM、極小値をmとする。M-2m=7であるときのbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。の部分 の考え方と解き方が分かりません・・ 詳しい解説を書いていただけると嬉しいです。 よろしくお願いします。

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • 回答No.2

きっと f(-1)=-f(x) ではなくて f(-x)=-f(x) でしょう。 そうであれば、  f(1)=1 → a+b+c+d=1 (1)  f(-x)=-f(x) → a(-x)^3+b(-x)^2+c(-x)+d=-ax^3-bx^2-cx-d → bx^2+d=0  これが任意のxで成立するには b=d=0 (2)  f'(1/2)=3a(1/2)^2+2b(1/2)+c=0 → 3a/4+b+c=0 (3) (2)を(1),(3)へ代入すれば、a+c=1, 3a/4+c=0 → a=4, c=-3

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すごく、丁寧な回答ありがとうございます。 おかげで、自分も理解することができ、助かりました。

  • 回答No.1
  • sanori
  • ベストアンサー率48% (5664/11798)

こんばんは。 もしかして、 f(-1)=-f(x)  は、書き間違いですか?

共感・感謝の気持ちを伝えよう!

質問者からの補足

あ、すみません;;書き間違えてました;; 正しくは、f(-x)=-f(x) です。

関連するQ&A

  • 関数決定問題について疑問です

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極小値0をとり、x=2で極大値4をとるようなa,b,c,d,の値を求めよ。の問題で解き方は分かるのですが、解説のところでf'(0)=0,f'(2)=0,f(0)=0,f(2)=4は必要条件であって逆を調べる必要があると書かれているのですが、3次関数の場合2つの条件f'(0)=0,f'(2)=0があるので必ず極値は存在する、よって逆を調べる必要がないような気がするのですがどうなんでしょうか?それと 次の条件を満たす3次関数f(x)を求めよ。f'(2)=3,f'(1)=-2,f(1)=1,f(2)=1,という問題では逆を調べる必要があると書かれていませんでした。なぜこっちの問題だと逆を調べる必要はないのですが?わからないので教えてください             

  • 微分の問題

    『a,bを実数とする。f(x)=x^3+ax^2+bx/3-(a^2+3a+2)/3は 極大値と極小値をもち、そのさは4/27である。 ・aとbの関係式を求めよ。』 f(x)を微分してf'(x)=0として x=(-a±√a^2-b)/3として √の中が0になってxが重解になってはいけないから a^2-b≠0⇔b≠a^2としましたが 解答はb=a^2-1でした。 どうしてその答えになるかわかりません。 お助けお願いします。

  • 微分における四元一次連立方程式

    【問】x=1で極小値4をとり,x=2で極大値5をとる三次関数F(x)を求めよ。 という問題で,私は F(x)=Ax~3+Bx~2+Cx~2+d F'(x)=3Ax~2+2Bx+C において F(1)=A+B+C+d=4 F'(1)=3A+2B+C=0 F(2)=8A+4B+2C+d=5 F'(2)=12A+4B+C=0 と、でてきました。この四元一次連立方程式の解放を教えてください。

  • 3次関数の微分の問題

    こんにちは。 数研出版「ベーシックスタイル三訂版」の163、164の問題です。 解説が無いので分からず困っています。 [163] 3次関数f(x)=x^3-ax^2が、0<x<1で極値をもたないための実数aに関する条件を求めよ。 [答え] a≦0、3/2≦a [164] 関数f(x)=1/3x^3-a^2x-1(a>0)の極大値と極小値との差が9/16となるaの値を求めよ。 [答え] a=5/3 以上です。 どちらか一方だけでもかまいませんので、分かるかたよろしくお願いします。

  • 微分積分の質問です。

     3次関数f(x)=x^3+ax^2+bx+cはx=1およびx=-3で極値をとり、極小値は-5であるものとする。  (1)a,b,cの値を求めよ。  (2)点(0,c)で曲線y=f(x)に接する接線の方程式を求めよ。  (3)(2)で求めた接線と曲線y=f’(x)で囲まれた図形の面積を求めよ。  私は(1)は、f(x)は右肩上がりの3次関数だからf(1)=-5、また、題意よりf’(1)=0、f’(-3)=0で考えてa=-15/4,b=9/2,c=-27/4となりました。  (2)は、(1)で求めたものをf(x)に当てはめて、そのf(x)を微分し・・・と 接線はy=(9/2)x-27/4となりました。  解答が省略されていてこれらの解があっているのかは、分かりません。  (3)は答えが{37√(37)}/2となっていたのですが、私の答えとは違っていて・・・。  (1)(2)からまちがっているのか、(3)を間違ったのかも分からないのですが、教えていただけると幸いです。

  • 微分の問題

    3次関数f(x)=x^3-ax^2+ax-3aがあり、g(x)=f(x)-xf´(x)とする。ただしaを定数とする。 (1)g(x)を求めよ。 g(x)=-2x^3+ax^2-3a (2)a>0とする。g(x)の極大値、極小値をaを用いて表せ。 極大値(5/27)a^2-3a 極小値-3a (3)a≠0とする。方程式g(x)=0が異なる2つの実数解をもつとき、定数aの値とその時の実数解を求めよ。 (1)(2)はあってますか? また、この問題の(3)を教えてください。

  • 至急 問題解説お願いします

    こんばんは。 タイトル通りですが、以下の問題の解説をお願いします。途中式なども省かず示していただけるとありがたいです。 (1)3次関数 y=2x^3–3x^2+3ax(aは実数の定数)がx=α、x=βでそれぞれ極大値、極小値をとるとき、次の問に答えよ。  (ア)αの値の範囲を求めよ。  (イ)α+β、αβの値を求めよ。  (ウ)f(x)の極大値と極小値の値の和が0であるとき、aの値を求めよ。 (2)関数f(x)=2x^3+9x^2+6x–1はx=(   )で極小値(   )をとる。 ちなみに回答は、 (1)  (ア)a<1/2  (イ)α+β=1、αβ=a/2  (ウ)a=1/3 (2)順に、[–3+√5]/2、[7–5√5]/2 です。よろしくお願いします!

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

  • 数学の解答解説お願いします。

    いつもお願いしてばかりですみません。今回もお願いします。 a,b,cは実数とする。f(x)=x^3+ax^2+bx+c x=0のとき極大値3をとる。 b,cの値を出せ。という問題です。 f(x)にx=0を代入してc=3は出せました。 またf(x)を微分して極値を取るので3x^2+2ax+b=0という式も 出しましたが・・ bの値はどのようにしたら出せるでしょうか? 解答解説よろしくお願いします。

  • 微分

    微分の問題を教えてください。 f(x)=x^3+(a-1)x^2-a+2<aは実数>とするとき、次の問いに答えよ。 (1)y=f(x)のグラフはaの値によらず2定点を通ることを示せ。 (2)y=f(x)の極大値を与えるxの座標mを求めよ。 (3)aが実数全体を動くとき、(m,f(m))の軌跡をxy平面上に図示せよ。 (1)は(1,2)(-1,0)と答えが出たんですけど、(2)は微分して増減表を書こうとしたら大小関係が分からず答えが2つになってしまいます。(3)は図示は無理なので式あたりまで教えてください。