• ベストアンサー
  • 困ってます

三次関数

三次関数f(x)=x^3+ax^2+bx+cはx=1で極大値1をとり、x=3で極小値をとる。このときa,b,cの値と極小値を求めよ。 という問題です。答えa=-6,b=9,c=-3,f(3)=-3 答えだすのは問題ないんですけど、丁寧な模範解答にこう書かれていました。 「y=f(x)がx=1,3で極値をとるならばf’(1)=f’(3)=0が成立します。(f’(1)=f’(3)=0をそれぞれ計算し、a,bの値をだした後)、 a,bの値を出した直後はまだ必要条件だから、実際に x=1,3の前後でf’(x)の符号変化が起きているどうかを確認しておくべきです。十分性の確認というやつですね」 そこで質問ですが、問題文に「x=1で極大値1をとり、x=3で極小値をとる。」とあるんだから、普通に前後で符号の変化が起こることが分かるのに、なぜわざわざ確認しないといけないんですか? 極値と、そこで傾きが0になる、は同値ではないことは理解しています。 だれかご教授お願いします!

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数212
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
noname#166245
noname#166245

問題文に「x=1で極大値1をとり、x=3で極小値をとる。」とあるからこそ 確認が必要かと思いますよ。 ご自身でもおわかりのとおり、三次関数だと変曲点がありますよね。 f’(1)=f’(3)=0 から、a,b,cが出ましたけど、変曲点でもf’(x)=0になるわけですから、 それで問題文の条件とあう関数になっているかどうかはわからないじゃないですか。 問題文に「x=1で極大値1をとり、x=3で極小値をとる。」とあるからこそ、 本当にそうなのかを確認する必要があるのではないでしょうか。 例えば、問題文が「x=1で変曲点となり、x=3で極小値をとる。」と なっていたらどうでしょうか。解き方は同じで同じ答えがでます。 で、このとき、実際に入れてみたらx=1では極大になるとしたら、 その解は不適です。解なしが正解かもしれません。 答えが今は一つしか出てきてないからいいじゃんと思うかもしれませんし、 実際、答えだけ書くのであればそれでいいかも~と思います。 ただ、もっと複雑な問題で答えの候補が複数でてきたとしたら、 やはり確認しなければならないはずなので、 候補がひとつの場合でも(厳密に考えれば)確認すべきと思いますし、 今からその癖をつけておいてね、ということかと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三次関数の問題

    三次関数についての問題です。 f(x)=1/3x^3+ax^2+bx+cにおいて (1)f(0)=0 f´(0)=2 (2)x=tで極大になり、また   x=2tで極小になる。 この二つを満たす時、 a・b・c・tの値と、f(x)の極値を求めなさい。 分かるのはtのみで、他が全く分かりません。 判明したtから他の値も求まるのでしょうか。 分かる方いましたら、ヒントでかまいませんので教えて ください。

  • 三次関数の導出

    次の問題について ある三次関数について、極小値は(4,-53)、極大値の座標が(-2,55)であることが分かっています。 三次関数の式を求めよ (元は違う問題なので、答えが求まらないかもしれません) 関数をf(x)=ax^3+bx^2+cx+dとおき、 f'(x)=0より、f'(x) = 3ax^2+2bx+c = (x-2)(x-4) = 0とおきました。 条件から変曲点が(1,1)ですから、これも利用して計算しようとしているのですが、 a,b,c,dの値が一定に定まりません。 上記条件付けに何か間違っているところはあるでしょうか。

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

その他の回答 (1)

  • 回答No.1
noname#152422
noname#152422

その「模範解答」とやらの全文を編集なしに提示してくれないと、答えようがありません。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • 三次関数の問題です。

    一応自分でもやってみたのですが、途中でわからなくなりました。 次の問題です。 Θは0°<=Θ=>90°を満たす定数角とする。三次関数 F(x)=x^3-(3cos^2Θ)x^2+(3cos2Θ)x が極値を持ち、極大値をMとおくとき、次の各問いに答えよ。 (1) Θのとり得る値の範囲を求め、MをΘで表せ。 (2) (1)の範囲でΘを変化させるとき、Mのとり得る値の範囲を求めよ。 です。よろしくお願いします。

  • 関数決定問題について疑問です

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極小値0をとり、x=2で極大値4をとるようなa,b,c,d,の値を求めよ。の問題で解き方は分かるのですが、解説のところでf'(0)=0,f'(2)=0,f(0)=0,f(2)=4は必要条件であって逆を調べる必要があると書かれているのですが、3次関数の場合2つの条件f'(0)=0,f'(2)=0があるので必ず極値は存在する、よって逆を調べる必要がないような気がするのですがどうなんでしょうか?それと 次の条件を満たす3次関数f(x)を求めよ。f'(2)=3,f'(1)=-2,f(1)=1,f(2)=1,という問題では逆を調べる必要があると書かれていませんでした。なぜこっちの問題だと逆を調べる必要はないのですが?わからないので教えてください             

  • 三次関数の問題です。教えて下さい。

    3次関数f(x)=xの三乗-(a+3)xの二乗+3ax-2b(a,bは定数)があり、 f′(2)=-3を満たしている。 関数f(x)の極大値をM、極小値をmとする。M-2m=7であるときのbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。の部分 の考え方と解き方が分かりません・・ 詳しい解説を書いていただけると嬉しいです。 よろしくお願いします。

  • 三次関数が極値を持つための条件

    三次関数f(x)が極値を持つための条件はf'(x)に符号変化が起こることだと本に書いてあるのですが、なぜなのか理由を教えてください。

  • 三次関数の問題

    ----------------------------------------------- 三次関数f(x)=x^3-(3/4)x , g(x)=ax^3+bx^2+cx+dがある 区間 -1≦x≦1 において、|g(x)|≦1/4である。 (1)h(x)=f(x)-g(x)とおくとき、h(-1),h(-1/2),h(1/2),h(1)と0との大小関係をそれぞれしらべよ (2)a=1のとき、すべてのxに対して、g(x)=f(x)が成り立つことを示せ ----------------------------------------------- それぞれ2問あります。 このうち(1)は解けたのですが、(2)でつまずきました。 (1)で利用したh(x)を利用するのかと思い、 h(x)=-bx^2-(3/4+c)x-d として、x=-1,-1/2,1/2,1の値をそれぞれ代入して不等式を作ったり また|g(0)=d|≦1/4からdの値の範囲を求めて・・・ などなど色々試行錯誤したのですが、どうも進みません。 どなたか、ヒントを教えていただけないでしょうか?

  • センター試験1990数学IIの微積の問題

    センター試験1990数学IIの微積の問題です。 なぜmのとる値の範囲がm≧-1になるのか教えてください。 問題 f(x)=x^3+ax^2+bxは、x=1/√3で極小値-2√3/9をとる。 このとき、a=0、b=-1であり、f(x)の極大値は2√3/9である。 曲線y=f(x)上の点P(x,y)における接線の傾きmのとる値の範囲m≧-1である。 問題では、mのとる値の範囲の部分は空欄になっています。

  • 三次関数の問題です

    解答を教えてください!よろしくお願いします。 kは定数とする. f(x)=2x^3+3kx^2-6x-2kはx=αで極大値をとり、x=βで極小値をとるとする. (1)αβの値を求めよ.またα+βをkを用いて表せ。 (2)f(x)を(1/6)f’(x)で割った余りを求めよ. (3)f(α)f(β)をkを用いて表せ. (4)f(x)=0は異なる3個の実数解をもつことを示せ. よろしければ解答を教えてください! よろしくお願いします。

  • f(x)=ax^3 + bx^2 -12x + 5 が、x=-1で極大

    f(x)=ax^3 + bx^2 -12x + 5 が、x=-1で極大値をとり、x=2で極小値をとる場合 f(1)の値はいくらか? f'(x)=3ax^2 + 2bx -12 にしたと思うのですがこの後がどうすればよいのかすっかり忘れてしまいました。 どの様に解いていくのでしょうか? 解りやすく教えて頂けないでしょうか?

  • 数学「微分法」の問題が分りません。教えてください。

    (1)aは0以上の定数です。このとき、関数y=x^2(x-a)の極値を求めてください。(途中式もお願いします。) (2)関数f(x)=ax^3-3ax^2+b (1≦x≦3)の最大値が8、最小値が-4であるとき、定数a、bの値を求めてください。ただし、a<0とします。 (途中式もお願いします。) ちなみに答えは、 (1)a=0のとき極値を持たない、a>0のとき極大値0(x=0) 極小値-4a^3/27(x=2a/3) (2)a=-3、b=-4

専門家に質問してみよう