• 締切済み
  • 困ってます

円に内接した三角形の面積

半径√2 の円に3角形ABCが内接しており、∠BAC=90°です。 3角形ABCの面積をSとするとき、Sのとりうる値の範囲を求めなさい。 三平方の定理を使うのでしょうか?・・・

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数91
  • ありがとう数5

みんなの回答

  • 回答No.2

正弦定理で BC/sin90°=2√2 BC=2√2直径に相当 これが底辺になるので 高さは一番高い半径√2までの範囲になります

共感・感謝の気持ちを伝えよう!

  • 回答No.1

角度が 90 度なので, 直角三角形の斜辺は,円の直径です. あとは高さが取れる範囲を考えれば

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 内接三角形の面積

    円に内接している三角形の面積の求め方について教えてほしいです。 円に内接している三角形をABCとおき、円の中心OからBCに垂線をおろし、 その交点をH、距離をt、そして半径をrとする。 このとき、三角形の面積は1/2×2√(r^2-t^2)×(r+t)でいいのでしょうか? (r+t)についてどのような三角形のときにも応用できるかどうかが いまいちよくわからないので教えてほしいです。よろしくお願いします。

  • 2等辺三角形に内接する円の面積と底辺

    AB=AC=1である2等辺三角形ABCに内接する円の面積を最大にする底辺の長さの求め方で、自分の解き方の間違いがわからないので質問します。 内接円の半径をr、底辺の長さをx(x>0)として、∠B=∠C=θ(0<θ<π/2)とおくと、3角形ABCの面積は2通りにあらわせ、△ABC=(1/2)*(1+1+x)*r,△ABC=(1/2)*1*x*sinθ この2つからr=(x*sinθ)/(x+2) 内接円の面積は、π*r^2からr^2が最大のとき最大となる。f(x)=r^2={(x*sinθ)/(x+2)}^2 と置いて、f'(x)=sin^2θ*(4x/(x+2)^3)となり、0<θ<π/2からsin^2θ>0より、 4x/(x+2)^3=0を解こうとしてもx>0から4x/(x+2)^3>0となり、f'(x)=0となるxは求められません。 sinθを使ったのが計算間違いの理由かと思うのですが、定数として扱ってはいけない 理由がわかりません。どなたか間違いを指摘してください。 解説では、内接円の半径をr。底辺の長さを2xとして、3角形の3辺の条件から |1-1|<2*x<1+1から0<x<1、 3角形ABCの面積の1つめは、(1/2)*√(1-x^2)*2xとし、2つめは(1/2)*(1+1+2x)*r,、2つからr={x*√(1-x^2)}/(1+x)を導き、 f(x)=r^2=(x^2-x^3)/(1+x)、f'(x)=-{2x*(x^2+x-1)}/(1+x)^2 、f'(x)=0となるxは0<x<1から x=(√5-1)/2 あとは増減表を書いて、x=(√5-1)/2のとき面積は最大となる。 底辺のながさは2x=√5-1でした。

  • 円に内接する三角形の面積が最大のときの三角形の形の証明

    【問題】 平面上の点Oを中心とし半径1の円周上に相異なる3点A、B、Cがある。 三角形ABCの内接円の半径rは1/2以下であることを示せ。 rが最大のときは円の面積が最大。そのときの三角形ABCは正三角形だと 予想できるのですが、証明の仕方がわかりません。 わかる方教えてください。お願いします。

  • 三角形の二辺と面積から内接円の半径を求める

    三角形の二辺(15、13)と面積(84)から内接円の半径の求め方を教えてください。

  • 円に内接する三角形の面積

    中学入試問題に悩んでいます。考えても見当がつきませんでしたので、どなたか、ご回答をお願いいたします。 問題 半径5の円に内接する△ABCがある。 AB=8,AC=2√10とし、点Aから辺BCに垂線ADを引いてできる△ADCの面積を求めよ。 図がなくて分かりづらいかもしれませんが、よろしくお願いします。

  • 三角形と内接円の問題

    △ABCとその内接円があり、内接円と辺BC、CA、ABとの接点をそれぞれD、E、Fとする。 (1)AF=x、BD=y、CE=zとする。△ABCの面積Sと内接円の半径rをx、y、zで表せ (2)Iを内接円の中心とする。  P=(AB・BC・CA)/(AI・BI・CI)の最小値を求めよ。 x、y、zを正の数とすると不等式 (x+y+z)/3 ≧ xyzの三乗根 が成り立つことは用いてよい。 という問題に取り組んでいます。 (1)はヘロンの公式を利用して、 S=√(xyz)(x+y+z)、r=√(xyz)/(x+y+z) と一応なりました。 (2)なのですがAI、BI、CIなどをそれぞれ三平方の定理をもちいて出して代入してみると複雑でうまく計算できませんでした。何かいい方法はありませんでしょうか 回答いただけるとありがたいです。 宜しくお願いします

  • 円に内接する面積の求め方を教えて下さい。

    中学数学について教えて下さい。 半径12cmの円Oと円Oに内接する正六角形ABCDEFがあります。(反時計回り) 問題(1)△ABOの面積→回答:36√3 問題(2)線分ACの長さ→回答:12√3 何故この回答になるのか教えて下さい。宜しくお願いします。

  • 直角三角形の面積について教えてください。

    直角三角形の面積について教えてください。 ある試験問題ですが、直角三角形ABCに半径3cmの円が内接しています。 今、辺AB=8cm、∠BAC=90℃のとき、直角三角形ABCの面積はどれか? 1:56cm2 2:58cm2 3:60cm2 4:62cm2 5:64cm2

  • 半径Rの円Oに内接する三角形ABC

    半径Rの円Oに内接する三角形ABCがAB=12、BC=12、cos∠ABC=3/5を満たす。このときsin∠ABC=ア/イ、AC=ウエ、R=オカ/キである。 更に∠ABCの二等分線と円Oとの交点のうちBと異なる点をDとすると∠ABC=∠AODから、AD=ク√ケ/コである。 また三角形AODの面積はサシス/セである。 sin∠ABC=4/5 AC=10 R=25/4 までは解くことができました。 図もなんとなくですが書けました。(Dの場所はよくわかりません) ADと三角形AODの面積の解き方と答えを教えてもらえると幸いです。 よろしくお願いします。

  • 内接円の面積 等比級数

    内接円の面積 等比級数 閲覧ありがとうございます。 手詰まりしてしまったので質問させていただきます。 一辺の長さが1の正三角形ABCの内接円をO1とし、O1に外接し、辺AB、ACに接する円をO2、O2に外接し、辺AB、ACに接する円をO3とする。 以下同様にして、円O1、O2、O3、…、On、…を作る時、円の面積の総和を求めよ。 (画像があります) ヘロンの公式を使い、O1の半径(√3/6)、O1の面積(π/12) までわかりましだが、 O2以下をどうすればよいのか、 どのような等比級数となるのがわかりません。 解説よろしくお願いします。