• 締切済み

内接円が2つの円錐

図がうまくかけず、球が内接しているようにみえませんが、内接しています。 問題 右図のような高さが12cm、底面の半径が5cmの円錐に内接する球S1がある(大きい方)。さらに、球S1と円錐に接するS2がある。(小さい方) 球S2の半径を求めよ。  この問題で、△ADE∽△ABCで、相似比より内接円の半径を求めていました。 なぜ、、△ADE∽△ABCの比と球の相似比が一致するとわかるのですか??

みんなの回答

noname#137826
noname#137826
回答No.2

球S1, S2が円錐に接する点での断面は添付図のようになります。 三平方の定理より、AB = 13 です。 3つの角が等しいので、△ABC ∽ △ADE ∽ △AFG ですから、球S1, S2の半径をr1 (= DE), r2 (= FG)とすると、 5 : 13 = r1 : 12 - r1 5 : 13 = r2 : 12 - r2 - 2×r1 となりますね。これを解けば答えが求まります。

全文を見る
すると、全ての回答が全文表示されます。
  • debut
  • ベストアンサー率56% (913/1604)
回答No.1

元の図より、△ABCや△ADEがどれなのかを示してください。 断面図での直角三角形ですか。 球の半径がその三角形の1つの辺になっているから相似で求め られるということではないでしょうか? 半径だけを考えるのだから、平面図形の相似比でわかるという。 詳しく補足してください。

hohoho0507
質問者

補足

新しく板を作りました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 数学に強い方へ

    図がうまくかけず、球が内接しているようにみえませんが、内接しています。 問題 右図のような高さが12cm、底面の半径が5cmの円錐に内接する球S1がある(大きい方)。さらに、球S1と円錐に接するS2がある。(小さい方) 球S2の半径を求めよ。  この問題で、△ADE∽△ABCで、相似比より内接円の半径を求めていました。 なぜ、、△ADE∽△ABCの比と球の相似比が一致するとわかるのですか??

  • 円錐に内接する球があるときは直円錐ですか。

    数学1Aの勉強をしています。 どうしてもわからないことがあるので教えていただけると助かります。 ------------------ 問題: 図のような高さが12cm, 底面の半径が5cmの円錐に内接する球S1がある. さらに, 球S1と円錐に接する球S2がある. 球S1の半径rを求めよ。 ------------------ この問題のヒントには、この場合は二等辺三角形なので特に簡単だと書いてあり、解法も平面上の二等辺三角形を用いるものとなっています。 問題の解説通り、切り口が二等辺三角形だとするとこの円錐は直円錐ということになると思います。 しかし、この円錐が直円錐だということはどこで判断できるのでしょうか。確かに見た目は直円錐ですが。 球が内接すればどんな円錐も直円錐になるのですか。 数学の基礎がなってないため勘違いもかなりあり、ちょっとしたことでつまずいてしまいます。 よろしくお願い致します。

  • 半径10cmの球に、底面の半径6cmの直円錐が内接している。

    半径10cmの球に、底面の半径6cmの直円錐が内接している。 この球から円錐を取り除いた体積を求めなさい。 ただし、円周率は3として計算し、答えは小数点以下を切り捨てて求めなさい。 この問題のとき方を教えてください。お願いします。

  • 三角形の問題なのですが

    宿題なのですがどうしても自分の力だけでは解けませんでした。 高校の数学なのですが、教えてください。 よろしくお願いします。 (1)半径3の球の体積と、半径4の底面を持つ高さ6の円錐n体積の比の 求め方を教えてください。 球の体積?:円錐の体積? (2)半径4の円に内接する正三角形の面積の求め方を教えてください。 △ABC=? 問題が多くてすいません。

  • 図形と計量(高校数学I)

    図形と計量の問題で 「半径2の球に高さ3の円錐が内接している。球と円錐の体積比と表面積比を求めよ」 が分かりません。ヒントによると円錐の底面は√3になるそうですが何故でしょう。球の体積と表面積は分かるのですが・・・。 ちなみに答え(球:円錐)は体積比32:9、表面積比は16:9だそうです。 確かに円錐の底面の半径が√3ならこのようになるのは分かりますが、どうやって考えればいいのでしょう?

  • 円柱に内接する円錐と球の体積

    底面の半径が2、高さが4の円柱がある。 いま、円柱の中に出来る最大の円錐と球が円柱に内接している。 このとき、円柱の体積U、円錐の体積V、球の体積Wを求めよ。 U = 2^2*π*4 = 16π V = (1/3)*2^2*π*4 = 16/3π ここまでは分かるんですが、最後の珠の体積Wの求め方が分かりません。 そもそも球は円錐の中に収まっている状態なのでしょうか? 求め方を教えてくださいm(_)m

  • 円に内接する四角形に内接する円

    円と接線に関する問題がわからないので質問します。 半径5cmの円Oと半径2cmの円O'の共通外接線Lと共通内接線Mとがあり。円O,O'と接線Lとの接点P,P'とし、円O,O'と接線Mとの接点R,Sとする。LとMの交点Qとして、OO'=9cmとするとき、四角形OPQRに内接する円の半径を求めなさい。という問題です。 解説でわからない点は、四角形OPQRに内接する円の中心はOQ上にあるということです。半径5cmの円Oと四角形OPQRに内接する円の相似の中心はQだからかと思いましたしが、納得できません。どなたか、四角形OPQRに内接する円の中心はOQ上にあるということを説明してください。お願いします。

  • 円錐

    図は.円錐の展開図である. 側面のおうぎ形の中心角が108°であるとき.側面のおうぎ形の半径と底面の円の半径の比を求めてください お願いします! 分からなくて困っています

  • 相似な立体の体積比(数学IA) について教えてください。

    相似な立体の体積比(数学IA) について教えてください。 数学IAの問題で 添付図の立体は、底面の半径が4cmの円錐を底面から2cmのところで底面に平行な平面で切ってできたものである。この立体(太線)の体積を求めよ。 という問題です。解答によると元の円錐の体積をVとすると求める立体の体積Sは S={1-(3/4)^3}V となっています。{1-(3/4)^3}この部分が分かりません。何故このようになるのか教えて頂けると助かります。

  • 球に内接する四面体

    タイトルにある通り、球に内接する四面体に関する内容なんですが、 例えば、球の中心Oから下ろす垂線と四面体P-ABCの底面△ABCとの交点は△ABCの外心と一致するのでしょうか?一致しないとしたらその交点は△ABCのどんな点にあたるのでしょうか? 教えてください。お願いします