• 締切済み
  • 困ってます

2つの内接円の面積比

AB8cmAC17cmBC15cmの直角三角形に内接する2つの円P、Qがあります。円Pの半径と、円Pと円Qの面積の比を最も簡単な比で答えなさい。円は弧がくっついて隣あっています。  数学が苦手ですので、出来るだけ簡単な言葉でお願いします。 特に面積比のところですが三角形の相似比とリンクしているところがわかりずらいです。お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数856
  • ありがとう数1

みんなの回答

  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

内接円Pの半径Rは下記URLの公式から http://www.geisya.or.jp/~mwm48961/kou2/s1sc203.htm R=8*15/(8+15+17)=3cm P,Qをそれぞれの内接円の中心座標、rをQの半径とすると CP=√(12^2+3^2)=3√17cm CQ=CP-3-r=(3√17-3-r)cm 直角三角形の相似比の関係から r:3=(3√17-3-r):3√17 これから r=3(√17-1)/(√17-1) 円Q、円Pの面積をSq、Spとすると Sq/Sp=(r/3)^2={(√17-1)/(√17-1)}^2 =(49-9√17)/32 となります。 途中の計算と図との対応関係は、自分で解答の流れを追って、自分でやって確認してみて下さい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 とくに、直角三角形の相似比・・・のあとの部分を 重点的に理解を深めたいとおもいました。

  • 回答No.1

もともとこの問題には図はないのでしょうか。 PとQの円が直角三角形のどの辺とどの辺に内接しているのかが分かりません!!

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご面倒おかけします。図が実はあるのですが、 パソコン上に図を描く事が私が出来ない為言葉での説明になってしまいました。 円Pは辺AB、BC、ACに接しており 円Qは辺AC、BCに接してます。 底辺の左の頂点をB、反対をCとしています。 斜辺がACです。 わかりずらいと思うのですが、よろしくお願いします。

関連するQ&A

  • 内接円について

    3cm、4cm、5cmの直角三角形があるとして中に円が各辺に接しているとする。このときの円の半径を出せって言われたら、普通は 三角形の面積=各辺の和×円の半径÷2から算出しますよね。 では、この三角形の中に、横に一列にn個の円が並んでいて(全て同じ半径の円、その半径をnを使ってあらわせって言われたらどうやってだしますか? 三角形ABCを書いて、一番頂点をAとして、時計周りにBCと頂点を定めます。角度A=90度、AB=4cm、BC=5cm、CA=3cmです。 いま、BCに接する円がn個あり、右端の円が、ABとBCに接していて、左端の円が、BCとCDに接しているとします。右端の円の中心をOR、左端をOLとすれば、頂点AとOR、OLを結び、ORとOLも結びます。端っこと真ん中に三角形そして、下に台形ができたので、この面積と直角三角形の面積が等しい事を利用して半径を算出する方法を考えたのですが、あまりうまいやり方ではないようなきがします。ほかに何か出す方法ってありますかね?

  • 内接円

    辺の長さがそれぞれAB=c、BC=a、CA=bで∠Aが直角である直角三角形ABCの内接円の半径rをa、b、cで表せ 初めから解き方を教えてください

  • 三角形の二辺と面積から内接円の半径を求める

    三角形の二辺(15、13)と面積(84)から内接円の半径の求め方を教えてください。

  • 内接円の半径について

    角Aを直角とする直角三角形ABCでAB=5cm、AC=12cmとするとき、この三角形に内接する円の半径を求める問題があるのですが、この問題を3平方の定理を使って解くことはできないのでしょうか。

  • 直角三角形の面積について教えてください。

    直角三角形の面積について教えてください。 ある試験問題ですが、直角三角形ABCに半径3cmの円が内接しています。 今、辺AB=8cm、∠BAC=90℃のとき、直角三角形ABCの面積はどれか? 1:56cm2 2:58cm2 3:60cm2 4:62cm2 5:64cm2

  • 扇形の内接円について

    ご指導をお願いします。 中学3年生ですが、数学の図形分野が苦手です。学校では現在、 相似分野の途中です。まだ、三平方の定理は習っていません。 解らない問題ですが、 半径15cm、中心角60°の扇形に内接する円の面積の求め方が 解りません。 よろしくお願いします。

  • 3,4,5cmの直角三角形の角がすべて同じ一つの円に内接することはあり

    3,4,5cmの直角三角形の角がすべて同じ一つの円に内接することはありますか、その円の半径はいくらですか? 同じ三角形に内接する円の半径が1cmであることはわかりましたので、その三角形の頂点がすべて同じ円に内接することはありますか? 

  • 内接円が2つの円錐

    図がうまくかけず、球が内接しているようにみえませんが、内接しています。 問題 右図のような高さが12cm、底面の半径が5cmの円錐に内接する球S1がある(大きい方)。さらに、球S1と円錐に接するS2がある。(小さい方) 球S2の半径を求めよ。  この問題で、△ADE∽△ABCで、相似比より内接円の半径を求めていました。 なぜ、、△ADE∽△ABCの比と球の相似比が一致するとわかるのですか??

  • おうぎ形の内接円て・・・

    平面上に3点A,B,CがありAB=BC=CA=1である。点Bを中心に半径1の弧ACをかく、このとき線分BC,弧CA、線分ABに内接する円の半径を求めよという問題でおうぎ形の内接円の半径の求め方ってありますか? またさらに点Cを中心に半径1の弧ABをかく。 このとき線分BC、弧CA、弧ABに内接する円の半径を求める問題、そして点Aを中心に半径1の弧BCをかいてこのとき弧BC,弧CA,弧ABに接する内接円の半径はどうやって求めればいいでしょうか?できれば詳しく教えていただけるとありがたいです

  • 内接三角形の面積

    円に内接している三角形の面積の求め方について教えてほしいです。 円に内接している三角形をABCとおき、円の中心OからBCに垂線をおろし、 その交点をH、距離をt、そして半径をrとする。 このとき、三角形の面積は1/2×2√(r^2-t^2)×(r+t)でいいのでしょうか? (r+t)についてどのような三角形のときにも応用できるかどうかが いまいちよくわからないので教えてほしいです。よろしくお願いします。