- ベストアンサー
- すぐに回答を!
円錐の数学の問題の解答・解放を教えてください。
底面の半径が3cm、母線の長さが5cmの円錐の中に半径の等しい2つの球P,Qがある。2つの球P,Qは互いに接し、円錐の底面と側面に接しているとき、以下の問いに答えよ。ただし、2つの球の中心と、円錐の頂点と、円錐の底面の中心は同一平面上にあるものとする。 1)球Pの半径を求めよ。 2)円錐の体積は、球Pの体積の何倍か? 3)球Pと円錐の側面が接する点をAとする。点Aを通り、円錐の底面に平行な平面で球Pを切断する時、球Pの切断面の面積を求めよ。 4)設問の円錐の中に、球Pと半径が異なる球Rを次のように入れる。3つの球は互いに接し、球Rは円錐の側面に接している。3つの球の中心と円錐の頂点が同一平面上にある時、球Rの半径を求めよ。
- toki0512
- お礼率32% (80/245)
- 数学・算数
- 回答数3
- ありがとう数0
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
1) 球P(球Q)の半径をpとする。 三平方の定理より、OD = 4 OP = 4 - 3p △ODC ∽ △OAP AP : OP = p : (4 - 3p) = 3 : 5 5p = 12 - 9p p = 6/7 2) 円錐の体積 = (1/3) * π * 3^2 * 4 = 12π 球Pの体積 = (4/3) * π * (6/7)^3 = 288π/343 ∴12π / (288π/343) = 343/24倍 3) AB : AP = AB : 6/7 = 4 : 5 AB = 24/35 ∴求める断面積 = 576π/1225 4) OQ = 4 - 6/7 = 22/7 HQ = (22/7) * (3/5) = 66/35 = p + 2r = 6/7 + 2r ∴球Rの半径r = 18/35
関連するQ&A
- 数学IA 円錐の問題
数学IA 円錐の問題 数学IAの円錐の問題で分からないところがあるので助けてください・・・ 底面の半径が9 高さが12の円錐で、頂点Oから底面へ引いた垂線と底面との交点をPとする。線分OPを3等分する点をQ、Rとするとき次の問いに答えよ (1)底面の直径の両端をA、Bとする時sin∠AOBを求めよ。 (2)点Q、Rを通り底面に平行な平面でこの円錐を切断してできる3つの立体を、体積の小さい順にX、Y、Zとする。このとき、YとZの体積の比を求めよ。 (3) (2)のとき、XとYの表面積の比を求めよ。 という問題です。 (1)と(2)はできました。 ただ(3)がわかりません・・・ 教えてください。 回答よろしくお願いします。
- ベストアンサー
- 数学・算数
- 円すいの問題で比を使う解答する方法は?
体積144πcm^3 高さが12cmの円すいがある。これについて次の各問いに 答えよ。 (3)頂点から4cmのところで底面に平行な平面で切ったときの上の部分の円すいの体積Vcm^3を求めよ。 解)144π=4πr^2 から r=6 半径をxcmとして,4:12=x:6 x=2 V=1/3×4π×4=(16/3)πcm^3
- ベストアンサー
- 数学・算数
- 数学IA 円錐の問題
数学IA 円錐の問題 数学IAの円錐の問題で分からないところがあるので助けてください・・・ 底面の半径が9 高さが12の円錐で、頂点Oから底面へ引いた垂線と底面との交点をPとする。線分OPを3等分する点をQ、Rとするとき次の問いに答えよ (1)底面の直径の両端をA、Bとする時sin∠AOBを求めよ。 (2)点Q、Rを通り底面に平行な平面でこの円錐を切断してできる3つの立体を、体積の小さい順にX、Y、Zとする。このとき、YとZの体積の比を求めよ。 (3) (2)のとき、XとYの表面積の比を求めよ。 という問題です。 OA、OBの長さは15 (1)のsin∠AOBは24/25 という値は出ています。 (2)と(3)が全く分からずに困っています。 回答よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学の問題です!お願いします
数学の問題です!お願いします 図IのAのコップは底面の半径が3cm、高さが10cmの円柱の形。Bのコップは底面の半径が4cm、高さが20cmの円錐を、高さが半分になるように分けた立体のうち 、底面を含む方の立体の形をしており、2つに分けた面の円の半径は2cmである。また、Cのコップは容器の部分が、底面の半径が3cm、高さが8√2cm、母線が12cmの円錐の形をしており、円錐の頂点には、容器を支えるための長さ3cmの支柱と底面の半径が3cmの円形の代が、円錐底面と平行になるようについている このとき、次の問いに答えなさい ただし、円周率はπとしガラスの厚みやゆがみは考えないものとする (1)Aのコップの側面積を求めなさい (2)Cのコップの容器部分の円錐について、側面の展開図の中心角の大きさを求めなさい (3)3つのコップの中で、体積が最も大きいのはどれか。そのコップの体積も求めなさい (4)誤ってCのコップを倒してしまった。倒れたコップは、図IIのように、滑ることなく平面上を転がり、底面の代の円がちょうど1回転したところで止まった。このとき、Cのコップの容器の部分が平面上を転がって出来る立体の体積を求めなさい
- 締切済み
- 数学・算数
- 微分、球と円錐の体積の最小値の問題
問:頂点がz軸上にあり、底面がxy平面上の原点を中心とする円である直円錐がある。この円錐の側面が原点を中心とする半径1の球に接しているとき、この円錐の体積の最小値を求めよ。 答:(√3)π/2 問題集の解説: 円錐の底面の半径をr,高さをhとおくと、側面が半径1の球と接するから、{√(r*r-h*h)}=rh ・・・(1) より r*r=(h*h)/(h*h-1) (1<h) 体積をVとおくと V=(π*r*r*h)/3=(π*h*h*h)/3(h*h-1) であるから (π/3)*(1/V)=(1/h)-(1/h*h*h) f(x)=x-x*x*x (0<x<1)・・・(2)の増減を調べると、 f(x)は0<x<1で正の値をとり、x=1/√3 のとき最大値(2√3)/9をとるからVは、h=√3のとき最小値をとる。 質問: 1.何故、(1)が成り立つのでしょうか? 2.(2)が何を表しているのかがよくわかりません。(2)以降よくわからないので、解説お願いします。
- ベストアンサー
- 数学・算数
- 図IのAのコップは底面の半径が3cm、高さが10cmの円柱の形。Bのコ
図IのAのコップは底面の半径が3cm、高さが10cmの円柱の形。Bのコップは底面の半径が4cm、高さが20cmの円錐を、高さが半分になるように分けた立体のうち 、底面を含む方の立体の形をしており、2つに分けた面の円の半径は2cmである。また、Cのコップは容器の部分が、底面の半径が3cm、高さが8√2cm、母線が12cmの円錐の形をしており、円錐の頂点には、容器を支えるための長さ3cmの支柱と底面の半径が3cmの円形の代が、円錐底面と平行になるようについている このとき、次の問いに答えなさい ただし、円周率はπとしガラスの厚みやゆがみは考えないものとする (1)Aのコップの側面積を求めなさい (2)Cのコップの容器部分の円錐について、側面の展開図の中心角の大きさを求めなさい (3)3つのコップの中で、体積が最も大きいのはどれか。そのコップの体積も求めなさい (4)誤ってCのコップを倒してしまった。倒れたコップは、図IIのように、滑ることなく平面上を転がり、底面の代の円がちょうど1回転したところで止まった。このとき、Cのコップの容器の部分が平面上を転がって出来る立体の体積を求めなさい
- 締切済み
- 数学・算数