• ベストアンサー
  • すぐに回答を!

内接三角形の面積

円に内接している三角形の面積の求め方について教えてほしいです。 円に内接している三角形をABCとおき、円の中心OからBCに垂線をおろし、 その交点をH、距離をt、そして半径をrとする。 このとき、三角形の面積は1/2×2√(r^2-t^2)×(r+t)でいいのでしょうか? (r+t)についてどのような三角形のときにも応用できるかどうかが いまいちよくわからないので教えてほしいです。よろしくお願いします。

  • tbg
  • お礼率35% (64/178)

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数1176
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • debut
  • ベストアンサー率56% (913/1604)

わかっている部分によっていろんな式が考えられます。 △ABC,AB=c、BC=a、CA=b、円の半径をrとします。 ・2辺とはさむ角が既知(例えばa,b,∠C)   S=(1/2)*a*b*sin∠C ・3辺と円の半径が既知(上の式の変形です)   S=(a*b*c)/(4r) ・2角と円の半径が既知(例えば∠Aと∠B)   S=(1/2)*r^2*{sin(2∠A)+sin(2∠B)-sin(2∠A+2∠B)} (1辺と両端の角の一方、円の半径が既知の場合は煩雑な式に  なったのでやめておきます) など、いろいろ考えられますが、 面積の公式・・(1/2)×[2辺の積]×sin(その2辺ではさむ角) 正弦定理・・・a/sin∠A=b/sin∠B=c/sin∠C=2r        (rは外接円の半径) が基になっています。

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.2
  • incd
  • ベストアンサー率44% (41/92)

そもそも一定ではないのだから公式はないでしょう。 面積を決定するには情報が足りないということです。 では、どのような情報があればよいかという点について、 三角比をすでに習っているのであれば、 正弦定理と三角形の面積公式を用いて考えてはどうでしょうか。 正弦定理によって、任意の三角形の頂点Aとその対辺a、外接円の半径Rについて a = 2R sin(A) という関係があることが分かります。 また、三角形の面積Sは S = ab sin C /2 で求められることが分かっています。 これらの組み合わせによってなんらかの関係式を導くことはできるかもしれません。 三角比を用いずに同じようなことをすることもできますが、あまりエレガントではないでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。私の提示した条件では情報が少ないんですね。面積を求めるには三角比を使うのが手っ取り早いですね、ありがとうございました。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

う~ん, ダメなのは一瞬でわかるはずなんだけど.... 思考実験: 点O を中心とする半径 r の円に弦BC をひきます. これで r と h が決まります. さて, この円周上の任意の点A に対し, △ABC の面積は一定になるでしょうか.

共感・感謝の気持ちを伝えよう!

質問者からの補足

任意の点Aをとると底辺BCに対して高さは一定ではないので、面積も一定には ならないですね。だから、この式を適用することはできませんね。 では、内接三角形の面積を求める公式のようなものはないんでしょうか?

関連するQ&A

  • 円に内接する三角形の面積が最大のときの三角形の形の証明

    【問題】 平面上の点Oを中心とし半径1の円周上に相異なる3点A、B、Cがある。 三角形ABCの内接円の半径rは1/2以下であることを示せ。 rが最大のときは円の面積が最大。そのときの三角形ABCは正三角形だと 予想できるのですが、証明の仕方がわかりません。 わかる方教えてください。お願いします。

  • 三角形と内接円・内心

    三角形ABCにおいて、AB=7、BC=3である。この三角形の内心をIとする。AIの延長と辺BCとの交点をDとし、BIの延長と辺ACとの交点をEとする。4点C,E,I,Dは同一円周上にある。 1)角BCAの大きさ及び、線分CAの長さを求めよ。 2)BDの長さ及び、BI*BEの値を求めよ。 3)三角形ABCの内接円の半径を求めよ。 以上が問題です。三辺や二辺+一角が与えられた内接円関連の問題は解いたことがあるのですが、条件が二辺ではどのようにしたらよろしいでしょうか?

  • 三角形の二辺と面積から内接円の半径を求める

    三角形の二辺(15、13)と面積(84)から内接円の半径の求め方を教えてください。

  • 三角形の面積の求めかた

    友人に頼まれ、問題を解いたのですが答えがあっているのかいまいち自信が持てません。 間違った答えを教えるのも心苦しいので、こちらで数学の得意な方に答えあわせをしていただければと思い質問を立てました。 図が表示できないので少し面倒かもしれませんが、助けてくださると嬉しいですm(_ _)m よろしくお願いいたします 三角形ABCにおいて、AB=2√3、∠A=75°、∠B=45°である。 また、頂点Aから辺BCに引いた垂線がBCと交わる点をHとする。 この時三角形ABCの面積を求めなさい。 私は三角形ABHと三角形AHCの面積をそれぞれ求め、 三角形ABCの面積は 3+√3 になりました。

  • 教えて下さい

    円に内接する三角形ABCについて、頂点AからBCにおろした垂線とBCの交点をHとする。AB=AC=3√10、BC=6であるとき 円の半径を求めよ です。わたしは三角形ABCは二等辺三角形なので、垂線の足のHは円の中心をとおり、円の中心はAHを2:1に内分すると考え、中心とBを結び、三角形BCHにおいて三平方の定理を使い、3√2とだしたのですが、あっているでしょうか?

  • 三角形の面積の求め方

    正三角形ABCが円Oに内接していて、 直径BDと辺ACの交点をE, ADとBCを延長し交点をFとする。 DEは1cm このときの三角形ABFの面積を求める問題があります。 (点Aを上方において、点Bを左下、点Cを右下として正三角形をとった場合 点Dは点Cの上に位置しています。) この問題でどういう流れでABFの面積を求めたらよいのかわかりません。 合同を使って解こう考えたのですが Aから辺BFに対して垂直に線を引いてその点をGとしたとき AGの長さの求め方がわかりません。 あとOEの長さも求めたいのですが、よくわかりません。 おしえてください。

  • 半径Rの円Oに内接する三角形ABC

    半径Rの円Oに内接する三角形ABCがAB=12、BC=12、cos∠ABC=3/5を満たす。このときsin∠ABC=ア/イ、AC=ウエ、R=オカ/キである。 更に∠ABCの二等分線と円Oとの交点のうちBと異なる点をDとすると∠ABC=∠AODから、AD=ク√ケ/コである。 また三角形AODの面積はサシス/セである。 sin∠ABC=4/5 AC=10 R=25/4 までは解くことができました。 図もなんとなくですが書けました。(Dの場所はよくわかりません) ADと三角形AODの面積の解き方と答えを教えてもらえると幸いです。 よろしくお願いします。

  • 2等辺三角形に内接する円の面積と底辺

    AB=AC=1である2等辺三角形ABCに内接する円の面積を最大にする底辺の長さの求め方で、自分の解き方の間違いがわからないので質問します。 内接円の半径をr、底辺の長さをx(x>0)として、∠B=∠C=θ(0<θ<π/2)とおくと、3角形ABCの面積は2通りにあらわせ、△ABC=(1/2)*(1+1+x)*r,△ABC=(1/2)*1*x*sinθ この2つからr=(x*sinθ)/(x+2) 内接円の面積は、π*r^2からr^2が最大のとき最大となる。f(x)=r^2={(x*sinθ)/(x+2)}^2 と置いて、f'(x)=sin^2θ*(4x/(x+2)^3)となり、0<θ<π/2からsin^2θ>0より、 4x/(x+2)^3=0を解こうとしてもx>0から4x/(x+2)^3>0となり、f'(x)=0となるxは求められません。 sinθを使ったのが計算間違いの理由かと思うのですが、定数として扱ってはいけない 理由がわかりません。どなたか間違いを指摘してください。 解説では、内接円の半径をr。底辺の長さを2xとして、3角形の3辺の条件から |1-1|<2*x<1+1から0<x<1、 3角形ABCの面積の1つめは、(1/2)*√(1-x^2)*2xとし、2つめは(1/2)*(1+1+2x)*r,、2つからr={x*√(1-x^2)}/(1+x)を導き、 f(x)=r^2=(x^2-x^3)/(1+x)、f'(x)=-{2x*(x^2+x-1)}/(1+x)^2 、f'(x)=0となるxは0<x<1から x=(√5-1)/2 あとは増減表を書いて、x=(√5-1)/2のとき面積は最大となる。 底辺のながさは2x=√5-1でした。

  • 円に内接した三角形の面積

    半径√2 の円に3角形ABCが内接しており、∠BAC=90°です。 3角形ABCの面積をSとするとき、Sのとりうる値の範囲を求めなさい。 三平方の定理を使うのでしょうか?・・・

  • 円に内接する三角形の面積

    中学入試問題に悩んでいます。考えても見当がつきませんでしたので、どなたか、ご回答をお願いいたします。 問題 半径5の円に内接する△ABCがある。 AB=8,AC=2√10とし、点Aから辺BCに垂線ADを引いてできる△ADCの面積を求めよ。 図がなくて分かりづらいかもしれませんが、よろしくお願いします。