• ベストアンサー

積分について、質問があります。

積分について、質問があります。 ∫1/(1-x+x^2) dx の問題なのですが、 =1/((x-1/2)^2+(√3/2)^2) x-1/2=t とおいて、 =1/((t)^2+(√3/2)^2) となる。までは、できたのですが、その後の計算が分かりません。 答えとしては、 (2tan^-1*((2x-1)/√3)))/√3 となっています。 どなたか、分かる方いらっしゃるでしょうか? よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

>その後の計算が分かりません。 答えの中にヒントがあります。 教科書や参考書の中にも 積分公式「∫{1/(1+x^2}dx=tan^(-1)(x) +C」やこの種の例題が載っているはずです、恐らく授業でもやっているでしょう。解くだけの情報がありそれらの知識をちょっと組み合わせるだけで解けます。 #1さんの言われる通りですね。 t=(√3/2)u とおけば ∫1/(1+u^2)du の公式にある形の積分に変換できます。 この公式の積分のやり方は u=tan(v) とおけば良いと教科書、参考書に載っているでしょう。この置換で 1+tan^2(v)=1/cos^2(v) の公式が使え、かつ du=dv/cos^2(v) なので 1/(1+u^2)du=dt となって ∫1/(1+u^2)du =∫dt=t+C 後は置き換えの逆の順序で元の変数に戻して良くだけです。 後は自分で出来ますね。 積分は公式を覚えておき、その積分の形に持ち込むことが解けることに通じます。 自分でかんばってそういった応用力を身につけて下さい。

その他の回答 (1)

  • htms42
  • ベストアンサー率47% (1120/2361)
回答No.1

これだけの段階であれば何1つできていないというレベルです。 t=x-1/2 と置いたのはどういう見通しに基づいてのことなんでしょう。 ∫1/(x^2+1)dxができるということを踏まえているはずですね。 そうであればこの積分を調べればいいです。 こういう問題をやるということはこの積分が既に教科書に出てきているということのはずです。 ここに質問するより前にまず調べてください。 解答にtan^(-1)(  )が出てくるのであれば y=tan^(-1)(x)でdy/dxを求めてみるというのも当然やってみる手順のはずです。 この微分は大抵教科書に出ているものです。 そうでなければいきなり積分で出てくるはずがありません。 積分だから積分のところばかり見ているのではありませんか。 微分のところに戻って教科書を見てください。 何もやらずに解答を下さいと言っていればいつまでたってもできるようにはなりません。

関連するQ&A

専門家に質問してみよう