• ベストアンサー
  • すぐに回答を!

積分の問題が分かりません。

1/{x^2*√(x^2-1)}を積分する問題で、 t=x+√(x^2-1)とすると、 x=(t^2+1)/2t、 √(x^2-1)=(t^2-1)/2t、 dx=2(t^2+1)/4t^2となり、 ∫{2t/(t^2+1)}^2*2t/(t^2-1)*2(t^2+1)/4t^2dt= ∫4t/{(t^2+1)(t^2-1)}dt= ∫-2t/(t^2+1)+1/(t+1)+1/(t-1)dt= -log|t^2+1|+log|t+1|+log|t-1|= log|(t^2-1)/(t^2+1)|= log|2{x^2+x√(x^2-1)-1}/2x{x+x√(x^2-1)}|= log|x/√(x^2-1)| となったのですが、回答では√(x^2-1)/xとなるそうです。 何処が間違えているのかどなたかお教え下さい。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数35
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • debut
  • ベストアンサー率56% (913/1604)

>-1/x^2+x√(x^2-1)となるのではないでしょうか? そうなります。 -1/{x^2+x√(x^2-1)} =-1/[x{x+√(x^2-1)}] (有理化して) =-{x-√(x^2-1)}/x =-1+{√(x^2-1)/x} 不定積分なので-1を定数Cに含めれば√(x^2-1)}/x+C ということじゃあないのでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

たしかにそうですね。ありがとうございます。

関連するQ&A

  • 積分の手計算とwxmaxima(ソフトウェア)の計算が不一致です。

    積分の手計算とwxmaxima(ソフトウェア)の計算が不一致です。 ∫ x^2/(x+1) dxですが手計算で行くと、 t=x+1としてdx=dt ,x=t-1より、x^2=(t-1)^2 ∫ (t-1)^2/t dt ∫ (t^2-2t+1)/t dt ∫ (t-2+1/t) dt (t^2/2)-2t+log|t|+c = (t^2-4t)/2+log|t|+c = t(t-4)/2+log|t|+c ((x+1)(x-3))/2+log|x+1|+c となります。 変形して(x^2-2x-3)/2+log(x+1)ですが、 ソフトウェアで答え合わせをすると (x^2-2x)/2+log(x+1)になります。 手計算の-3はどこに行ったのでしょうか?

  • 定積分

    次の曲線の長さを求めよ (1)y=(1/3)x^(3/2) (0≦x≦12) (2)y=x(2-x) (0≦x≦2) という問題なのですが、 (1)y´=(1/2)x^(1/2) 公式より 長さs=∫[0→12]√(1+{(1/2)x^(1/2)}^2)dx =∫[0→12]√(1+(1/4)x)dx となるんですが、この積分の仕方がわかりません。 お願いします。 (2)y´=2-2x 長さs=∫[0→2]√(1+{2-2x}^2)dx =∫[0→2]√(1+(4-8x+4x^2))dx =∫[0→2]√(4x^2-8x+5)dx =∫[0→2]√{((2x-2)^2)+1}dx t=2x-2とおくとdx=dt/2 x:0→2、t:-2→2 よって =∫[-2→2](1/2)√(t^2+1)dt 公式より =1/4[t√(t^2+1)+log(t+√(t^2+1))][-2→2] =1/4{ {-2√5+log(-2+√5)}-{2√5+log(2+√5)} } =1/4{-4√5+log(-2+√5)-log(2+√5)} となるんですが、答えは√5+1/2log(2+√5)です。 この計算であってますか。どうすれば、答えになるでしょうか? お願いします。

  • 積分の問題で質問です。

    不定積分∫dx/(x^4+4)を求めよ、という問題です。 部分分数分解して、 ∫{(-x/8+1/4)/(x^2-2x+2)+(x/8+1/4)/(x^2+2x+2)}dx の形に変形したのですが、とりあえず(-x/8+1/4)/(x^2-2x+2)だけ見て、 (-x/8)/(x^2-2x+2) + (1/4)/(x^2-2x+2) と分解して、片方ずつ積分しました。ここで、 ∫(-x/8)/(x^2-2x+2)dx (x^2=tと置く置換積分を利用しました) =-1/16∫dt/(t-2√t+2) =-1/16∫dt/{(√t-1)^2+1} =(-1/16)*arctan(√t-1) =(-1/16)*arctan(x-1) ∫(1/4)/(x^2-2x+2)dx =1/4∫dx/{(x-1)^2+1} =(1/4)*arctan(x-1) となりました。(x/8+1/4)/(x^2+2x+2)の積分も同様に解きました。 この解き方だと答えにlogは出てきませんが、解答を見るとlogが入ったものとなっていました。一応、別の方法でその解答の形までたどり着けたのですが、上で説明したやり方が間違っているとは思えません。この解法は合っていますか?それとも間違っているのでしょうか。 どなたか教えてください。

その他の回答 (2)

  • 回答No.2
  • debut
  • ベストアンサー率56% (913/1604)

dxは(t^2-1)/(2t^2)では? すると最後は∫4t/(t^2+1)^2dtになるのでは?

共感・感謝の気持ちを伝えよう!

質問者からの補足

そうだとしても、2∫2t/(t^2+1)^2dt= -2/(t^2+1)= -2/{x^2+2x√(x^2-1)+x^2-1+1}= -1/x^2+x√(x^2-1)となるのではないでしょうか?

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

最後のあたりの計算がおかしい. (t^2-1)/(t^2+1) を [2{x^2+x√(x^2-1)-1}]/[2x{x+x√(x^2-1)}] としたところでまず分母を間違えています. そこから x/√(x^2-1) とするところは全く不明. x から t に置き換えるときに x=(t^2+1)/2t、 √(x^2-1)=(t^2-1)/2t、 としてることをつかえば簡単だったかも.

共感・感謝の気持ちを伝えよう!

質問者からの補足

(t^2-1)/(t^2+1)= [{x+√(x^2-1)}^2-1]/[{x+√(x^2-1)}^2+1]= {x^2+2x√(x^2-1)+x^2-1-1}/{x^2+2x√(x^2-1)+x^2-1+1}= 2{x^2+x√(x^2-1)-1}/2x{x+√(x^2-1)}= {x^2+x√(x^2-1)-1}/x{x+√(x^2-1)} でした。 それと、検算で、 {x^2+x√(x^2-1)-1}/[x{x+√(x^2-1)}]*x/√(x^2-1)= x{x^2+x√(x^2-1)-1}/x[x*√(x^2-1)+{√(x^2-1)}]^2= x{x^2+x√(x^2-1)-1}/x{x√(x^2-1)+x^2-1}=1 なので、log|√(x^2-1)/x|でした。すみません。 x=(t^2+1)/2t、√(x^2-1)=(t^2-1)/2tを使ってみましたが、 t^2+1=2xt、t^2-1=2t√(x^2-1)で、 (t^2-1)/(t^2+1)= 2t√(x^2-1)/2xt= {√(x^2-1)}^2/x{x+√(x^2-1)}= {x^2+x√(x^2-1)-1}/x{x+√(x^2-1)} となり、同じ回答になるはずです。 他にどこか間違っているでしょうか?

関連するQ&A

  • この積分の問題教えてください

    この問題の答えが無いので教えてください。 自分なりに解いたのですが、合ってるでしょうか? ∫[0,π/2] 1 / sinx+cosx dx tan(x/2)=t とおくと、 dx=2/(1+t^2) dt cosx=(1-t^2)/(1+t^2) sinx=2t/(1+t^2) となる。 置換した後の積分範囲は、 x|0→π/2 t|0→ 1 ∫[0,π/2] 1 / sinx+cosx dx = -2∫[0,1] 1 / t^2-2t-1 dx   分母を平方完成して = -2∫[0,1] 1 / (t-1)^2-2 dx  公式:∫[1 / x^2-a^2] = 1/2a log|x-a/x+a|なので =1/√2 log|(-√2-1) / (√2-1)| logの中が汚いかんじで合ってるか不安です。 教えてください。

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 定積分の問題です

    解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数)

  • 無理関数の積分

    x/√{2-x-x^2}を積分するのですが答えと合いません。 √{2-x-x^2}=√{(x+2)(1-x)}=(1-x)√{(x+2)/(1-x)} √{(x+2)/(1-x)}=tとおくと、 x=(t^2-2)/(t^2+1)、dx/dt=6t/(t^2+1)^2となります。 これを使って∫x/√{2-x-x^2}dxを書き換えると、 ∫2(t^2-2)/(t^2+1)^2dtとなるはずなのですが、どうしてもなりません。どこかまちがいがあれば指摘してください。お願いします。

  • 微分方程式

    微分方程式を2問ほど解けません お願いします 1問目 (x+y)y'+x-y=0 y'=((y/x)-1)/(1+(y/x)) y/xをtとおくと y’=t+xt' 以上より (t-1)/(1+t)=t+xt' (t+1)dt/(t^2+1)=-dx/x・・(1) 左辺=-logx+logC まではわかるのですが(1)の右辺が解けません 2問目 y'+2xy-x-x^3=0 y'+2xy=x^3+x 両辺にexp(x^2)をかけて exp(x^2)y=∫(x^3+x)exp(x^3)dx ここまではできたのですが右辺の積分ができません どちらか片方でも良いので教えてもらえると助かります

  • 原始関数の問題の解き方

    以下のように解いたのですが、解答に自信がありません。 途中の式など、間違っていればご指摘のほどよろしくお願いします。 次の原始関数を求めよ。 (1) ∫(x+1)^5 dx x+1=tとおく。 (dt/dx)=1より、dx=dt よって、∫(x+1)^5 dx=∫t^5 dt =(1/6)t^6+C =(1/6)(x+1)^6+C (Cは積分定数) (2) ∫e^(5x) dx 5x=tとおく (dt/dx)=5より、dx=(dt/5) =∫e^(t)(dt/5)+C =(1/5)e^(5x)+C (Cは積分定数) (3) ∫x/(x^2+1)^2 dx =∫{(x+1)-1}/(x^2+1)^2 dx =(1/2)∫{(2x+2)-2}/(x^2+1)^2 dx =(1/2)∫(x^2+1)'/(x^2+1)^2 dx =(1/2)log|(x^2+1)^2|+C (Cは積分定数) (4) ∫1/√(23-x^2) dx 公式 ∫1/√(a^2-x^2) dx=sin^(-1) x/√a+C (a>0)より =sin^(-1) x/√23 +C (Cは積分定数) ご指導、よろしくお願いします。

  • 原始関数を求めよという問題で答えが合わなくて困っています

    "次の関数の原始関数を求めよ"という問題なのですが、答えが一致しなくて困っています。 計算ソフトを使ってみたりしましたが、よく分かりませんでした。 違っている箇所の指摘をおねがいします。 もしかすると積分定数の違いかもしれません。 教科書の解: (1) x+cos[x]/(sin[x]+1) (2) (4/√3)*Tan^(-1)[tan[x/2]/√3]+log[2+cos[x]] 自分の解: (1) sin[x]/(sin[x]+1) …* tan[x/2]=t とおくと dx=2cos^2[x/2]dt ∴∫* dx=∫(2t/(1+t^2) )/( (2t/(1+t^2) )+1 )*2/(t^2+1) dt =∫4t/(1+t)^2*(1+t^2) dt =∫-2/(1+t)^2 +2/(1+t^2) dt =2/(1+t) +2Tan^(-1)[t] =2/(1+tan[x/2])+x // (2) (2-sin[x])/(2+cos[x])…* tan[x/2]=t とおくと dx=2cos^2[x/2]dt ∴∫* dx=∫{ (2-2t/(1+t^2)) / (2+(1-t^2)/(t^2+1)) }*2/(t^2+1)・dt =∫4*(t^2-t+1)/(t^2+3)(t^2+1)dt =∫2*{ t/(t^2+3)+2/(t^2+3)-1/(t^2+1) }・dt =∫2{ (1/2)*(t^2+3)'/(t^2+3)+(2/3)*(1/(t/√3)^2+1)-1/(t^2+1) }・dt =log[t^2+3]+(4/√3)*Tan^(-1)[t/√3]-2tan[t] =log[tan^2[x/2]+3]+(4/√3)*Tan^(-1)[tan[x/2]/√3]-x // よろしくおねがいします。

  • x^2/(1+x^4)の不定積分

    ∫x^2/(1+x^4)dxを解いてみたのですが、 まず、部分分数をして x^4+1 =(x^4+2x^2+1)-2x^2 =(x^2+1)^2-(√2x)^2 =(x^2+√2x+1)(x^2-√2x+1) x^2/(1+x^4) =x^2/(x^4+1) =(ax+b)/(x^2+√2x+1)+(cx+d)/(x^2-√2x+1) 分母を払って x^2 =(ax+b)(x^2-√2x+1)+(cx+d)(x^2+√2x+1) =(a+c)x^3+(-√2a+b+√2c+d)x^2+(a-√2b+c+√2d)x+b+d 恒等式なので a+c=0,-√2a+b+√2c+d=1,(a-√2b+c+√2d)=0,b+d=0 a=-1/(2√2),b=0,c=1/(2√2),d=0 ∫x^2/(1+x^4)dx =-∫(1/(2√2)*x)/(x^2+√2x+1)dx+∫(1/(2√2)*x)/(x^2-√2x+1)dx ここまで解きましたが、この先の積分がわかりません。

  • 不定積分の解き方がわかりません。

    不定積分の解き方がわかりません。 (1)I=∫(2x+3)/(x^2+2x+2) dx (2)I=∫x/{(x+1)^(1/3) -1} dx 2番は、 {(x+1)^(1/3)=t として、 x+1=t^3 x=t^3-1 よって、 dx=3t^2 dt となって、 I=∫{(t^3-1)/(t-1)}* 3t^2 dt まではできたのですが・・・・ これからどう展開すればいいのかわかりません (>_<) どなたかお願いします。

  • 数学 積分法

    数学でわからない問題があります。 cos^3xsinxを積分したいのですが、うまくいきません。 私が考えたのはこういうものです。 sinx=tとおく。cosxdx=dt cos^3xsinx=cos^2xcosxsinx また、cos^2x=1-sin2xより &#8750;cos^3xsinx dx=&#8750;(1-t^2)t dtとなる。 よって1/2t^2-1/4t^4+Cより 1/2sin^2x-1/4sin^4x+C (Cは積分定数) こうしたのですが違いました。 cosx=tとすると解答と一致し、 -1/4cos^4x+C となりました。 sinx=tのやり方のどこが間違っているのかわかりません。 教えてください。