- ベストアンサー
- 困ってます
積分の回答があっているか教えてください
以下の計算問題を解いたのですが、 よくわかってないまま解いたところもあり、あっているか自信がありません。 わかる方、ご指南おねがいします。 (1) ∫{1→2}1/(x+1) dx x+1=tとおく。 (dt)/(dx)=1→dx=(dt)/1 x | 1→2 --------- t | 2→3 ∫{2→3}1/t dt= [log |t|]{2→3} F(x)=log|3|-log|2| (2) ∫x^2/(1+x^2) dx 公式 1?(1+x^2) dx=arctan(x)+Cより F(x) = x-arctan(x)+C (Cは積分定数)
- niinii22
- お礼率94% (130/138)
- 回答数1
- 閲覧数15
- ありがとう数1
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- oyaoya65
- ベストアンサー率48% (846/1728)
>(1) ∫{1→2}1/(x+1) dx >x+1=tとおく。 >(dt)/(dx)=1→dx=(dt)/1 この式は単に「dx=dt」 と書けばよい。 >x | 1→2 >--------- >t | 2→3 >∫{2→3}1/t dt= [log |t|]{2→3} tの積分範囲が{2→3}でt>0であるからlog中のtには絶対値不要。 ∫{2→3}1/t dt= [log(t)]{2→3} >F(x)=log|3|-log|2| この式は×。左辺がxの関数、右辺が定数で「=」で結べない。 F(x)は書いては駄目。 =log(3)-log(2)=log(3/2) >(2) ∫x^2/(1+x^2) dx >公式 ∫1/(1+x^2) dx=arctan(x)+Cより >F(x) = x-arctan(x)+C (Cは積分定数) 省略しすぎで減点される。以下のように1行入れる。 F(x)=∫{1-1/(1+x^2)} dx = x-arctan(x)+C (Cは積分定数)
関連するQ&A
- 原始関数の問題の解き方
以下のように解いたのですが、解答に自信がありません。 途中の式など、間違っていればご指摘のほどよろしくお願いします。 次の原始関数を求めよ。 (1) ∫(x+1)^5 dx x+1=tとおく。 (dt/dx)=1より、dx=dt よって、∫(x+1)^5 dx=∫t^5 dt =(1/6)t^6+C =(1/6)(x+1)^6+C (Cは積分定数) (2) ∫e^(5x) dx 5x=tとおく (dt/dx)=5より、dx=(dt/5) =∫e^(t)(dt/5)+C =(1/5)e^(5x)+C (Cは積分定数) (3) ∫x/(x^2+1)^2 dx =∫{(x+1)-1}/(x^2+1)^2 dx =(1/2)∫{(2x+2)-2}/(x^2+1)^2 dx =(1/2)∫(x^2+1)'/(x^2+1)^2 dx =(1/2)log|(x^2+1)^2|+C (Cは積分定数) (4) ∫1/√(23-x^2) dx 公式 ∫1/√(a^2-x^2) dx=sin^(-1) x/√a+C (a>0)より =sin^(-1) x/√23 +C (Cは積分定数) ご指導、よろしくお願いします。
- ベストアンサー
- 数学・算数
- 不定積分の計算で出た定数は捨てて良いのでしょうか
46歳の会社員です。思うところがあって、1 年前から数学を独学で勉強しています。 非常にレベルが低い質問をしているのかもしれませんが、周りに聞ける人がいないのでここに質問をすることにしました。 不定積分の計算で出てきた定数は積分定数と扱って捨ててよいのでしょうか ? 例えば、 ∫(x + 1)^2 dx ((x + 1)の 2乗を積分) を ∫(x^2 + 2 * x + 1) dx に変形すると、 x^3 / 3 + x^2 + x になりますが、 x + 1 = t とおいて ∫t^2 dt に変形すると、 x^3 / 3 + x^2 + x + 1 / 3 となり、定数 1 / 3 が出てきます。 また、 ∫{2 / (2 * x + 2)} dx を ∫{1 / (x + 1)} dx に変形すると、 log|x + 1| になりますが、 2 * x + 2 = t とおいて ∫(2 / t) * (1 / 2) dt に変形すると、 log|2 * x + 2| になります。 これを log|2 * x + 2| = log|(x + 1) * 2| = log|x + 1| + log|2| と変形すると、定数 log|2| が出てきます。 これらの定数は積分定数として扱って捨ててよいのでしょうか ?
- ベストアンサー
- 数学・算数
- 不定積分が解答と一致しません
√{(x-1)/(2-x)}を積分せよ。という問題の答えが解答と一致しません √(2-x)=tと置いてx=2-t^2,dx==-2tdt ∫√{(x-1)/(2-x)}dx =∫√(1-t^2)(-2tdt)/t =-2∫√(1-t^2)dt [∫√(1-t^2)dt]の部分は公式を使ったり、部分積分を用いたりして[{t√(1-t^2)+arcsint}/2](ここでは積分定数を省略) よって-√(x-1)(2-x)-arcsin√(2-x)+C(C:積分定数)だと思ったのですが、解答には arctan√{(x-1)/(2-x)}-√(x-1)(2-x)+Cとあります。 -√(x-1)(2-x)-arcsin√(2-x)+Cという答えはあっていますか?
- ベストアンサー
- 数学・算数
- 積分のある公式について
∫1 / (x^2 + y^2) dx = log (x + (x^2 + y^2)^1/2 ) + C [Cは積分定数] という公式がありますが、 ∫1/ (x^2 + y^2 ) dx = (x^2 + y^2)^(1 - 1/2) * x^(1 + 2) /1 + 2 + C = (x^2 + y^2)^1/2 * x^3 / 3 + C [Cは積分定数] はいけないのでしょうか。 理由を詳しく教えていただければうれしいです。
- ベストアンサー
- 数学・算数
- 積分の問題で質問です。
不定積分∫dx/(x^4+4)を求めよ、という問題です。 部分分数分解して、 ∫{(-x/8+1/4)/(x^2-2x+2)+(x/8+1/4)/(x^2+2x+2)}dx の形に変形したのですが、とりあえず(-x/8+1/4)/(x^2-2x+2)だけ見て、 (-x/8)/(x^2-2x+2) + (1/4)/(x^2-2x+2) と分解して、片方ずつ積分しました。ここで、 ∫(-x/8)/(x^2-2x+2)dx (x^2=tと置く置換積分を利用しました) =-1/16∫dt/(t-2√t+2) =-1/16∫dt/{(√t-1)^2+1} =(-1/16)*arctan(√t-1) =(-1/16)*arctan(x-1) ∫(1/4)/(x^2-2x+2)dx =1/4∫dx/{(x-1)^2+1} =(1/4)*arctan(x-1) となりました。(x/8+1/4)/(x^2+2x+2)の積分も同様に解きました。 この解き方だと答えにlogは出てきませんが、解答を見るとlogが入ったものとなっていました。一応、別の方法でその解答の形までたどり着けたのですが、上で説明したやり方が間違っているとは思えません。この解法は合っていますか?それとも間違っているのでしょうか。 どなたか教えてください。
- ベストアンサー
- 数学・算数
- 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方
数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!
- ベストアンサー
- 数学・算数
質問者からのお礼
完璧な回答例、ありがとうございます。 細かいミスまで指摘していただき、本当にありがたいです。 独学で勉強している身ゆえ、ありがたさが骨身にしみます。 微分・積分は苦手分野のため、またご指導を仰ぐこともあると思いますが、その節はよろしくお願い申し上げます。