• ベストアンサー
  • すぐに回答を!

ベクトル、外接円、垂心

鋭角三角形ABCの外接円の中心をO、辺BCの中点をM、頂点Aから辺BCに下ろした垂線の足をD、 頂点Bから辺ACに下ろした垂線の足をEとし、直線AD、BEの交点をHとし、 (→)OA=(→)a、(→)OB=(→)b、(→)OC=(→)cとする。 (ベクトルABを(→)ABと表記することにします) (1) (→)OHを(→)a、(→)b、(→)cをを用いて表せ (2) 円Oの周上の点Pに対し、Qは   (→)OQ=1/2{(→)OA+(→)OB+(→)OC}-1/2(→)OPをみたすとき  (i)点Pが外心Oに関するAの対称点A'のとき、Qが線分AHの中点であることを示せ  (ii)点Pが円Oの円周上を動くとき、点Qの軌跡を求めよ 始めから詰まってしまいました。 (→)AD=s(→)AB+(1-s)(→)ACとおくと (→)AD=s{(→)b-(→)a}+(1-s){(→)c-(→)a} =-(→)a+s(→)b+(1-s)(→)c また(→)AD//(→)OMより (→)AD=(1/2)t{(→)b+(→)c}で係数比較と思ったのですが あれ?・・・(→)aは・・・(;´Д`) 出来れば(2)のほうもよろしくお願いします

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数893
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

(1)の正解は、 (→)OH=(→)a+(→)b+(→)c ですが、これをベクトルだけの計算で求めるのは難しいかもしれません。 数値計算で求めるなら、 AH=2OM を示すことができれば、(これも難しいかもしれませんが) (→)OH=(→)OA+(→)AH=(→)OA+2(→)OM=(→)a+(→)b+(→)c となります。 (2) (→)OQ=1/2{(→)OA+(→)OB+(→)OC}-1/2(→)OP=1/2{(→)OH-(→)OP} なので、 (i) (→)OQ=1/2{(→)OH-(→)OA'}=1/2{(→)OH+(→)OA} これは、AHの中点を示しています。 (ii) (→)OQ=1/2(→)OH-1/2(→)OP これは、中心が線分OHの中点で、半径が円Oの半分の円を描きます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答本当にありがとうございます (1)さえ示せれば(2)(3)はそれほど難しくは無いですね もう少し(1)を頑張ってみます

関連するQ&A

  • ベクトル 外接円

    三角形oabのoa、ob、abの辺の長さとoaベクトルとobベクトルの内積がわかっていて、 三角形oabの外心をcとしたとき、ocベクトルをoaベクトルとobベクトルを使って答える問題はどうやってとけばいいんでしょうか。高校の数学です。

  • ベクトルの問題なのですが、困っています!

    点Oを中心とし、半径1の円に内接する三角形ABCがOA+√3OB+2OC=0 を満たしている。内積OA・OB 、OA・OCを求めよ。 (1)∠AOB、∠AOCを求めよ。 (2)三角形ABCの面積を求めよ。 (3)辺BCの長さ、および頂点Aから対辺BCに引いた垂線の長さを求めよ。 どうやって考えればいいのか分かりません。 詳しく教えていただけると有難いです。

  • 【ベクトルと平面図形】

    点Oを中心とし、半径1の円に内接する△ABCが OA→+√3OB→+2OC→=0→を満たす。 (1)内積OA→・OB→、OA→・OC→は? (2)∠AOB、∠AOCは? (3)△ABCの面積は? (4)辺BCの長さ、および頂点Aから対辺BCに引いた垂線の長さは? 問題数が多いですが… 解ける方いらっしゃいますか(><)

  • ベクトルの問題

    ベクトルの問題が解けなくて困っています。 ------------------------------------------- 鋭角三角形ABCの外心をO 頂点Aから対辺BCに下ろした垂線と、頂点Bから対辺ACに下ろした垂線の交点をHとおく。 このとき、次の問いに答えよ。 (以降、文字はベクトルを表しています) a=OA b=OB c=OC とおく。 OHをa,b,cを用いてあらわせ。 ------------------------------------------- 「OH=a+b+cと置くとき、点Hが垂心であることを示せ。」 なる問題は解いたことがあるのですが、 逆から聞かれて、攻めあぐねています。 よろしくお願いします。

  • 正4面体の外接円について

    ある正4面体ABCDの外接球をかんがえます。「外接球の中心をOとすると、Aから底面BCDにおろした垂線の足をHとしたとき、 AB=AC=AD     かつ OB=OC=OD であることから対称性よりA,O,Hは同一直線上にある」 と書いてあるんですが、よくわかりません。 感覚的に一直線上にんる事はわかるんですが、ちゃんとした証明がほしいです。 よろしくおねがいします。

  • 外接円と内接円

    もう一つ分からない問題があったので教えてください。 AB=ACである二等辺三角形ABCにおいてBC=2であり、頂点AからBCに下ろした垂線の長さが2であるとする。 このとき△ABCの外接円と内接円の半径を求めよ。 という問題です。 お願いします。

  • ベクトル

    四面体ABCDはAC=BD、AD=BCを満たし、点OはOA=OB=OC=ODを満たすものとする。 Oに関する点A、B、C、D、の位置ベクトルをそれぞれa↓,b↓,c↓,d↓,とする (1)ベクトル(a-b)•(c+d)=0を証明せよ。 (2)AB,CDの中点をそれぞれM、Nとするとき、MNベクトルをa↓,b↓,c↓,d↓を用いて表せ。 (3)MNとABが直交することを証明せよ。 (1),(2)は分かるのですが、(3)の(d↓-a↓)•(c↓+d↓-a↓-b↓)/2の計算の仕方が分かりません。

  • ベクトルの問題なのですが・・

    三角形OABがあり、|OA|=√2、|OB|=√3、OA・OB=-3/2である。 また、辺ABの中点をM、辺OBを1:2に内分する点をNとし、Mから直線ANに下ろした 垂線の足をHとする。OA=a 、OB=bとする。 線分ABを直径とする円K上を動く点Pがある。三角形ANPの面積の最大値を求めよ。 また、そのときのOPをa,bで表せ。ベクトルは省略させていただきます。 円K上を動く点Pがある ってところがよくわかりません・・ 詳しく教えてもらえると嬉しいです!!

  • 数B ベクトルの質問

    数B ベクトルの質問です。 鋭角三角形ABCの外心をO、辺BCの中点をMとし、Aから辺BCに下ろした垂線上に点HをAH=2OMとなるよう定める。このとき、 ベクトルOA=ベクトルa ベクトルOB=ベクトルb ベクトルOC=ベクトルCとする。 その上で、ベクトルOHをベクトルa、ベクトルb、ベクトルcを用いて表せ。 また、Hは鋭角三角形ABCの垂心であることを証明せよ。 お願いします。

  • 外接円に関する求値問題です。

    外接円に関する求値問題です。 AB=13,BC=14.CA=15である三角形ABCにおいて、この三角形の外心から辺BCの中点までの距離を求めたいのですが、どなたかお願いいたします。n(m_.._m)n