• ベストアンサー
  • 困ってます

原始関数の問題の解き方

以下のように解いたのですが、解答に自信がありません。 途中の式など、間違っていればご指摘のほどよろしくお願いします。 次の原始関数を求めよ。 (1) ∫(x+1)^5 dx x+1=tとおく。 (dt/dx)=1より、dx=dt よって、∫(x+1)^5 dx=∫t^5 dt =(1/6)t^6+C =(1/6)(x+1)^6+C (Cは積分定数) (2) ∫e^(5x) dx 5x=tとおく (dt/dx)=5より、dx=(dt/5) =∫e^(t)(dt/5)+C =(1/5)e^(5x)+C (Cは積分定数) (3) ∫x/(x^2+1)^2 dx =∫{(x+1)-1}/(x^2+1)^2 dx =(1/2)∫{(2x+2)-2}/(x^2+1)^2 dx =(1/2)∫(x^2+1)'/(x^2+1)^2 dx =(1/2)log|(x^2+1)^2|+C (Cは積分定数) (4) ∫1/√(23-x^2) dx 公式 ∫1/√(a^2-x^2) dx=sin^(-1) x/√a+C (a>0)より =sin^(-1) x/√23 +C (Cは積分定数) ご指導、よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数89
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
noname#227064

> x^2+1=tとおくと、(dt/dx)=2x、よってdx=(dt/2x) > 与式=∫x/t^2 dx = ∫x/t^2 (dt/2x) > = (1/2)∫t^(-2)dt = (1/2)・(-1)・t^(-1)+C > = (-1/2)・(1/t)+C = -1/(2(x^2+1))+C (Cは積分定数) これでOKです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 助かりました。

関連するQ&A

  • 原始関数の問題です

    自分の解き方で間違ってないか、ご指南おねがいします。 問:次の関数の原始関数を求めよ。 (1) f(x)=(3x+1)^5 ∫(3x+1)^5 dxより、 3x+1=tとおくとdt=3dx。 ∫t^5 dx=∫t^5・(1/3)dt f'(x)=5・3・(3x+1)^4 +C (Cは積分定数) (2) g(x)=1/(x(x^2+1)) g'=(-3x^2-1)/(x^3+x)^2 +C (Cは積分定数) 間違っているなら、計算途中のヒントをいただければ ありがたいです。

  • 原始関数を求めよという問題で答えが合わなくて困っています

    "次の関数の原始関数を求めよ"という問題なのですが、答えが一致しなくて困っています。 計算ソフトを使ってみたりしましたが、よく分かりませんでした。 違っている箇所の指摘をおねがいします。 もしかすると積分定数の違いかもしれません。 教科書の解: (1) x+cos[x]/(sin[x]+1) (2) (4/√3)*Tan^(-1)[tan[x/2]/√3]+log[2+cos[x]] 自分の解: (1) sin[x]/(sin[x]+1) …* tan[x/2]=t とおくと dx=2cos^2[x/2]dt ∴∫* dx=∫(2t/(1+t^2) )/( (2t/(1+t^2) )+1 )*2/(t^2+1) dt =∫4t/(1+t)^2*(1+t^2) dt =∫-2/(1+t)^2 +2/(1+t^2) dt =2/(1+t) +2Tan^(-1)[t] =2/(1+tan[x/2])+x // (2) (2-sin[x])/(2+cos[x])…* tan[x/2]=t とおくと dx=2cos^2[x/2]dt ∴∫* dx=∫{ (2-2t/(1+t^2)) / (2+(1-t^2)/(t^2+1)) }*2/(t^2+1)・dt =∫4*(t^2-t+1)/(t^2+3)(t^2+1)dt =∫2*{ t/(t^2+3)+2/(t^2+3)-1/(t^2+1) }・dt =∫2{ (1/2)*(t^2+3)'/(t^2+3)+(2/3)*(1/(t/√3)^2+1)-1/(t^2+1) }・dt =log[t^2+3]+(4/√3)*Tan^(-1)[t/√3]-2tan[t] =log[tan^2[x/2]+3]+(4/√3)*Tan^(-1)[tan[x/2]/√3]-x // よろしくおねがいします。

  • 定積分の問題です

    解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数)

その他の回答 (2)

  • 回答No.2

(4)はあっています。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

検算していただき、ありがとうございます。 あってるとのこと、安心しました。

  • 回答No.1
noname#227064

得られた答えを微分してみましょう。 正しければ被積分関数と同じになります。 (1) d{(1/6)(x+1)^6+C}/dx = 1/6*6*(x+1)^(6-1) = (x+1)^5 (2) d{(1/5)e^(5x)+C}/dx = 1/5*e^(5x)*5 = e^(5x) (3) d{(1/2)log|(x^2+1)^2|+C} = d{log(x^2+1)+C}/dx = 1/(x^2+1)*2x = 2x/(x^2+1) (4) d{sin^(-1) x/√23 +C}/dx = わからないのでパス 少なくとも(3)の答えは間違っているようです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご指摘ありがとうございます。 >得られた答えを微分してみましょう。 そうでした。基本的なことを忘れていました。 ご指摘ありがとうございました。 >少なくとも(3)の答えは間違っているようです。 これでどうでしょう? 微分して、元に戻ると思うのですが。。。 x^2+1=tとおくと、(dt/dx)=2x、よってdx=(dt/2x) 与式=∫x/t^2 dx = ∫x/t^2 (dt/2x) = (1/2)∫t^(-2)dt = (1/2)・(-1)・t^(-1)+C = (-1/2)・(1/t)+C = -1/(2(x^2+1))+C (Cは積分定数)

関連するQ&A

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

  • ∫{x/(x+1)}dxの解き方

    とても初歩的なのですが、積分についての質問です。 ∫{x/(x+1)}dxの解き方が分かりません。 以下のように解きました。 ∫{x/(x+1)}dx x+1=tとする x=t-1よりdx=dt よって ∫{x/(x+1)}dx=∫{(t-1)/t}dt =∫(1-1/t)dt =t-log(t)+C (C:積分定数) =(x+1)-log(x+1)+C こうなったのですが、どうやら計算違いのようで、解は「x-log(x+1)+C」となっていました。 解が出なかったわけではなく、最初の時点で「x/(x+1)」を「1-1/(x+1)」と変形したらちゃんと解は出たのですが、上記の解法の間違いが分からず、もやもやしています。 どこが間違っているのでしょうか。 置換積分が使えるのは特定の数式の場合のみなのでしょうか。 積分は不得意なので、見苦しい点あるかと思いますが、ご指摘お願いします。

  • 原始関数の問題ですが、解き方を教えてください。

    原始関数の問題ですが、解き方を教えてください。 以下の原始関数を求めよ。 (1) ∫(1/(x^3+1))dx (2) ∫(1/√x^2+1)dx ↑正しい表記の仕方が分からなかったのですが、分母は √ 記号の中に x^2+1 があります。 どうかよろしく御願いします。

  • 積分(原始関数を求めよ)の問題で困っています

    問題: 1/{(1-x)*√(1+x)} の原始関数を求めよ 答: (ヒント) t=√(1+x)とおく、√2Tan^(-1)・√{(x+1)/2} となっているのですが、答えが合わないので見てほしいです。 自分の答:  t=√(1+x)とおくと dx=2t dt ,また 1-x=2-t^2 ∴∫1/{(1-x)√(1+x)} dx =∫2t/(2-t^2)*t dt = ∫2/(2-t^2) dt =∫(1/√2)*({1/(√2-t)}+{1/(√2+t)}) dt = (1/√2)*{log|√2+t|-log|√2-t|} … となってしまうのですが… よろしくおねがいします。

  • 数学 積分法

    数学でわからない問題があります。 cos^3xsinxを積分したいのですが、うまくいきません。 私が考えたのはこういうものです。 sinx=tとおく。cosxdx=dt cos^3xsinx=cos^2xcosxsinx また、cos^2x=1-sin2xより ∮cos^3xsinx dx=∮(1-t^2)t dtとなる。 よって1/2t^2-1/4t^4+Cより 1/2sin^2x-1/4sin^4x+C (Cは積分定数) こうしたのですが違いました。 cosx=tとすると解答と一致し、 -1/4cos^4x+C となりました。 sinx=tのやり方のどこが間違っているのかわかりません。 教えてください。

  • 積分に関する疑問です

    積分∫(1/sqrt(x^2+1))dx は、log{x+sqrt(x^2+1)}+c ですが、この積分問題は、x+sqrt(x^2+1)=tとおいて置換積分しますね。 こんなことをどうして思いつくんだろう?と疑問に思うのです。 この原始関数 F(x) = log{x+sqrt(x^2+1)} 自体どこから出てくるものなのでしょうか。初めてこの関数を微分してみた人は、どこからこんな式を考え付いて微分してみたのでしょうか?  この log{x+sqrt(x^2+1)} という式は、きっと何か他の問題を解いている途中に出てきてたまたま微分したら、いい結果が出たのではないか、と思っています。  ご存知の方、教えてください。

  • 数学

    数学 数IIIについての質問です ∫(sin2x・cosx)dx の不定積分の答えが(-2/3)cos^3x+C(Cは積分定数)になってしまいました sin2xを2sinx・cosxにしてから解いたのですがテキストには(-1/3)(sinx・sin2x+2cosx・cos2x)+C(Cは積分定数)とありました 和積を使った・・・のかな? 僕の解答でも入試でOKなのでしょうか? またテキストの解答のようになる途中式をおしえてください;;

  • 高校数学 積分

    ∫-1→1 (x+2)log(x+2)dx という問題で、部分積分法で解くのに、解答はx+2を積分して(x+2)^2としています。確かにこれだと、処理が簡単なのですが、1/2x^2+2xとしても微分するとx+2になるのですが、これで計算すると、(面倒くさいやり方ですが)答えが合いません。積分定数はなんでもよいのではないのでしょうか?わかりにくい説明ですみませんが、どなたかわかる方、お知恵を貸してください。

  • 原始関数の求め方教えて下さい

    ∫(6x2乗-8x+5)dxの原始関数の求め方がわかりません。置換積分法はわかるんですがこれで解くと途中でつまづいてしまいます。他の公式を使うんでしょうか?わかる方教えて下さいm(__)m

  • 三角関数の置換積分

    sin(x),cos(x)の有理関数の不定積分を求める方法で、多くの微積のテキストでは、t=tan(x/2)として、置換積分する方法が紹介されています。 ですが、私にはちょっとこの方法は論理的に少し強引に感じられます。 テキストによると、上の置換で、sin(x)=2t/(1+t^2), cos(x)=(1-t^2)/(1+t^2) dt/dx=(1+t^2)/2と表され、tの有理関数の不定積分に帰着させることが 必ずできると紹介されています。 ですが、t=tan(x/2)とおいてsin(x)などをtで表すということは、tan(x/2)が定義されているような x については可能ですが、例えば、x=πではsin(x)はtでは表されないはずです。 簡単な具体的な例をあげると、sin(x)を不定積分するとします。普通は直接積分するでしょうが、あえてこの方法で置換積分するとして、次の式が(多くのテキストの主張では)成り立ちます。 Integral(sin(x)dx) = Integral((2t/1+t^2) * 2/(1+t^2)dt)……[1] 右辺は、-(1-t^2)/(1+t^2)+C (Cは積分定数)の形で求まり、 (1-t^2)/(1+t^2) = cos(x)……[2] だったので、-cos(x)+C と不定積分が求まったかに見えます。 ところが、良く考えると、[1][2]の式はx=(2n-1)π,(n:整数)ではtが定義されないので、成り立ちません。tの式をあえてtan(2/x)で書いてみるとよくわかると思いますが、ところどころ不連続な関数(sin(x)を切ったもの)を積分し、不連続な関数(-cos(x)を切ったもの)が得られているだけです。しかも不連続ということは、各開区間で積分定数を独立に取れるので、厄介なことになります。 このあたりの議論を厳密にするにはどうすれば良いでしょうか。