• 締切済み

微分方程式

(x^2+4x+5)/x d^2y/dx^2 + (x^2-5)/x^2 dy/dx = 0 f(x) = (x^2+4x+5)/x とすると df/dx = (x^2-5)/x^2 なので、与式は (d/dx)(f(x)*(dy/dx)) = 0 これを一般解で表したいのですがf(x)*(dy/dx)=C1まではわかるのですがその先がわかりません。 お願いいたします。 また、x/(x^2+4x+5)を積分することは可能でしょうか。できたらその方法をよろしくお願いいたします。

みんなの回答

回答No.1

x/(x^2+4x+5)=1/2*(2x+4)/(x^2+4x+5)-2*1/{(x+2)^2+1} 積分すると右辺第1項はlog、第2項はarctanで積分できます。

shiroshi77
質問者

お礼

ありがとうございました。 わかりました。

関連するQ&A

  • 微分方程式について

    (d/dx)(f(x)*(dy/dx)) = 0 これを一般解で表したいのですがf(x)*(dy/dx)=C1からさきは積分できるのでしょうか。 よろしくお願いします。

  • 微分方程式

    (y+3x)dX+(x+1)dy=0 この微分方程式の一般解を求めたいのですか、(y+3x)dXはyがあるので積分できないし、(x+1)dyはxがあるので積分できないです。どのように解けばいいですか?

  • 2階微分方程式について(続けての質問ですいません)

    y''=f(y)の一般解の求め方で 両辺に2*y'をかけて、xで積分すると (y')^2 = 2*∫f(y)dy + C_1 になると書いてあるのですが 右辺は求められたんですが左辺がどうしてそうなるのかがわかりません。 自分でやった計算では ∫(y'' * 2*y')dx =∫(y'' * 2*(dy/dx))dx =2*∫(y'')dy =2*y' となってしまいます。 なんとなく間違ってるとは思うのですが 正しい方法がわからないのでアドバイスお願いします。

  • 微分方程式  積分方程式 について

    微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。

  • 微分方程式の問題

    問題 x^2 * d^2y/dx^2 - 3x * dy/dx + 3y = 0 この微分方程式に y = f(x) * x^3 を代入して、基本解を求めよ。 代入すると x * d^2f(x)/dx^2 +3df(x)/dx = 0 になりました。 どなたかここからの解答(解き方)をご教授ください

  • 微分方程式の問題なんですが

    d/dx{1/log(x)*dy/dx}=0って問題なんですが、自分なりに解いてみたんですが、あってるかどうか教えてください。 /////回答///////////////////////////// 一回積分して 1/log(x)*dy/dx=C1 dy=C1*log(x)*dx 積分して y+C2=C1{x*log(x)-x} でいいんでしょうか? 特に、一番初めの積分が成り立つのかが不安なんですが。 ご教授お願いします。 特にd(f(x,y))の部分がよくわかってません。

  • 全微分方程式-合ってるかどうかみてください。

    不定積分型公式と定積分型公式のそれぞれで解きました。 自信がないので、合ってるかどうか確かめてください。 お願いします。 {y^2+(e^x)siny}dx+{2xy+(e^x)cosy}dy=0 解)不:xy^2+(e^x)siny=c 定:xy^2+siny(e^x+1)=c (y-x^2)dx+(x+y^2)dy=0 解)不:-x^3/3+xy+y^3/3=c 定:-x^3/3+xy+y^3/3=c {3(x^2)(y^2)+1/x}dx+(1/y)・{2(x^3)(y^2)-1}dy=0 解)不:x^3y^2+log|x/y|=c 定:x^3y^2+log|x/y|=c

  • 2階微分方程式について

    yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 の解き方がわかりません。 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) . yp(dp/dy)+p^2+1=0......(1)問題式にd^2y/dx^2、dy/dx=pを代入する。 p(dp/dy)+p^2/y+y.......(2)両辺に1/yをかける。 . ベルヌーイ形なので,u=p^2 (du/dy=2p・dp/dy)を代入して、 1/2du/dy+u/y=-y.....(3) . uとyの、線形微分方程式として解いて、 u=p^2=1/y^2(-1/2・y^4+C)......(4) . p=±1/y√(-1/2・y^4+C)........(5) この後(5)を積分して解が出ると思うのですが、 (それ以前に考え方自体が間違っているかもしれませんが) 右辺の積分の仕方がわからず解けなくて困っています。 どなたか教えてください

  • 完全形でない3変数関数の微分方程式の解法

    全微分方程式A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz=0がある。この式をPとおく。ここで、ベクトル値関数f=[A,B,C]とおき、f・(rotf)=0となるならばPは積分可能でその一般解は下記の手順により求まる。 手順1:Pについてdz=0とすると、Adx+Bdy=0となる。この式をQとおく。これが(∂A/∂y)=(∂B/∂x)を満たすとき、また満たさないときは積分因子μをかけることによりこのQの一般解ξ(x,y,z)=E (Eは定数)が得られる。 手順2:Pの両辺にλをかけたものの一般解を求める。するとλAdx=(∂ξ/∂x)となる。これから、λの値を求める。 手順3:ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzとなり、このうち(∂ξ/∂x)dx+(∂ξ/∂y)dyはλAdx+λBdyとなるが、最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。 dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzと(∂ξ/∂x)dx+(∂ξ/∂y)dy=λAdx+λBdyより、λAdx+λBdy=dξ-(∂ξ/∂z)dzとなる。 するとPの両辺にλをかけた式は、λAdx+λBdy+λCdz=dξ+{λC-(∂ξ/∂z)}dz=0となる。 ここで、λC-(∂ξ/∂z)=ηとおくと、λAdx+λBdy+λCdz=dξ+ηdz=0となり、2変数の全微分方程式dξ+ηdz=0が得られる。この解が結局全微分方程式Pの一般解となる。 ここで質問です。 手順1でdz=0とした式Adx+Bdy=0 (∂A/∂y)=(∂B/∂x)、またはμAdx+μBdy=0 (∂μA/∂y)=(∂μB/∂x)を解くとこの一般解、ξ(x,y,z)=Eが得られ、この関数ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=Adx+Bdy=0、またはdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=μAdx+μBdy=0になるのが分かります。 手順2,3でλAdx+λBdy+λCdz=0という式が出てきますが、これはλをかける事により完全形になっていると思われます。しかしなぜλAdx=(∂ξ/∂x)となるのかが分かりません。ξはAdx+Bdy=0の解として現れる関数なので、λAdx+λBdy+λCdz=0を満たす関数は別にあり、例えばこれをσとすると、この関数の全微分はdσ=(∂σ/∂x)dx+(∂σ/∂y)dy+(∂σ/∂z)dz=λAdx+λBdy+λCdz=0となり、λAdx=(∂σ/∂x)dxとなるのではないのでしょうか? それともこの関数σがξと一致すると仮定しているのでしょうか? それからもう1つ気になるのですが、手順3で「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。」とありますが、これもよく意味が分かりません。なぜ(∂ξ/∂z)dzだけλRdzとはなるか分からないのでしょうか? おそらく私が根本的に間違っていると思いますので、詳しい方教えてください。お願いします。

  • 微分方程式の解き方

    1.y" - 2y' + y = x sinxの一般解を求めよ。 この問題で、一つの解の予想の仕方が分かりません。 2.(y^2)*((d^2)y/d(x^2)) = (dy / dx)^3 dy/dx = p、((d^2)y/d(x^2)) = (dp / dy)p とおき、 y^2 * p *(dp /dy)= P^3 y^2 * (dp/dy) = P^2 変数分離をして 1/(p^2) dp = 1/(y^2) dy -(1/p) = -(1/y) + C 1/p = 1/y - C p = y - 1/C p=dy/dx = y + A (A = -1/Cとおく) 1/(y + A) dy = dx log|y + A| = x + B y + A =±e^(B + x) y = Ce^x - A となりましたが 答えはlog|y|=x + C1y + C2です。 間違っているところを指摘していただけるとありがたいです。