• ベストアンサー
  • すぐに回答を!

2階微分方程式について

yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 の解き方がわかりません。 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) . yp(dp/dy)+p^2+1=0......(1)問題式にd^2y/dx^2、dy/dx=pを代入する。 p(dp/dy)+p^2/y+y.......(2)両辺に1/yをかける。 . ベルヌーイ形なので,u=p^2 (du/dy=2p・dp/dy)を代入して、 1/2du/dy+u/y=-y.....(3) . uとyの、線形微分方程式として解いて、 u=p^2=1/y^2(-1/2・y^4+C)......(4) . p=±1/y√(-1/2・y^4+C)........(5) この後(5)を積分して解が出ると思うのですが、 (それ以前に考え方自体が間違っているかもしれませんが) 右辺の積分の仕方がわからず解けなくて困っています。 どなたか教えてください

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数781
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

6行目まではいいかと思いますが yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) yp(dp/dy)+p^2+1=0 ここから次のように変数分離で解きます。 pdp/(p^2+1)+dy/y=0として、両辺積分。 (1/2)log(p^2+1)+logy=C 2倍して log(p^2+1)+2logy=log((p^2+1)y^2)=C (p^2+1)y^2=B^2 (e^C=B^2とおく) p^2=B^2/(y^2)-1 p=√(B^2-y^2)/y=dy/dx ∫dx=∫y/√(B^2-y^2)dy ここからy=Bsinθとおいて x+D=∫Bsinθdθ=Bcosθ よって、sinθ^2+cosθ^2=1に代入して (x+D)^2+y^2=B^2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 何度も質問申し訳ないのですが、 >(p^2+1)y^2=B^2 (e^C=B^2とおく) のところで、すぐに、e^C=B^2と置けるというのが理解できません。 この問題特有の置き方なのでしょうか。

関連するQ&A

  • 微分方程式の問題(2階)

    yy"-(y')^2=y^2logy 解:logy=Ae^(x)+Be^(-x) が解けなくて困っています。 p=y'として、 d^2y/dx^2=dp/dx=dp/dy・dy/dx=p・dp/dy 問題式に代入して、 yp(dp/dy)-p^2=y^2logy.....(1) p(dp/dy)-p^2/y=ylogy......(2)1/yを両辺にかける pとyについてのベルヌーイ形なので u=p^2として du/dy=2p・dp/dy (2)に代入して、 1/2(du/dy)-u/y=ylogy.....(3) 線形微分方程式になるので、 u=exp^(-∫-2/y){∫exp^(-∫-2/y)・(2ylogy)+C}.....(4) これを解いていくと、 u=p^2=y^2{(logy)^2+C}.......(5) p=y√[(logy)^2+C].........(6) とってしまい、以降が解けません。 (解き方自体が間違っているかもしれません) どなたか教えてください。

  • 微分方程式の問題

    dy/dx=2xy+x^3y^2 解:1/y=1/2(1-x^2)+Ce^(-x^2) の問題なのですが、 ベルヌーイの方程式のやり方で解いていった後、 du/dx=-2xu-x^3  [u=1/y du/dx=-1/y^2(dy/dx)] になり、線形微分方程式で解いていくと、 u=e^(-∫2xdx)(∫e^(∫2xdx)(-x^3)+c) となり、∫e^(∫2xdx)(-x^3)を部分積分の形で計算していくと、 解と異なる答えがでてきてしまいます。 どこが間違っているのでしょうか。

  • 微分方程式について。

    微分方程式の一般解をもとめます。 (1)dy/dx=(y^2)+y これは、線形微分方程式を使ってとくのでしょうか?? (2)(x-y)y'=2y 同次形で解きましたが 途中の式、 ∫du(1-u)/(u+u^2)=∫1/xでの右辺の積分がわかりません。 両者の解答の導き方を教えてください。お願いします。

その他の回答 (3)

  • 回答No.4

ANo.2さんではないですが、補足します。 >>(p^2+1)y^2=B^2 (e^C=B^2とおく) >のところで、すぐに、e^C=B^2と置けるというのが理解できません。 >この問題特有の置き方なのでしょうか。 これはANo.2さんの回答内においての下記変換を予測?しているからかと思います。違ったらすみません。。 >∫dx=∫y/√(B^2-y^2)dy >ここからy=Bsinθとおいて >x+D=∫Bsinθdθ=Bcosθ 回答2ではe^CをすぐにB^2を置きなおしてしますが、適当な定数でもかまいません。 たとえばこのときに B^2=D ととりあえず置いて計算を進めると、 ∫y/√(D-y^2)dy を解くことになります。 この形は ∫y/√(B^2-y^2)dy の積分の形にして y=Bsinθ と置くと解きやすいことがわかっているので、D=B^2 と置きなおして計算します(この辺の置換テクニックは教科書とか公式集とかにあったはず)。 置きなおさずに y=√Dsinθ で計算するのももちろんアリです。 この場合は(そのままでも正解だとおもいますが)積分をといた後に D=B^2 とすると求める解の形になります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧な解説ありがとうございました。 私の参考書には、そのような置換の仕方は載っていませんでした。 他の参考書で確認してみます。

  • 回答No.3

先の微分恒等式の最右辺が与式の中にあります。 これを最左辺で置き換えると単純な微分方程式になります。 これ以上書くと答え丸書きになるので、以降はご自分でお願いします。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

気づきました。ありがとうございました。 早速やってみます。

  • 回答No.1

(y^2)"=2(yy')'=2(yy"+(y')^2) に気付けば単純計算で解けますよ。 (正攻法かどうかは分かりませんが…)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

何度も質問すいません。 (y^2)"=2(yy')'=2(yy"+(y')^2) はどこで利用すればいいのでしょうか。

関連するQ&A

  • 同次形微分方程式

    下の“微分方程式を解け”という問題がわかりません。 (1) (x+y)+(x-y)(dy/dx)=0 (2) xy(dy/dx)=x^2+y^2 この2つなんですが、一応、同次形微分方程式の範囲なので y/xの形にしてみたんですが・・・ (1) (x-y)(dy/dx)=-(x+y) (dy/dx)=-(x+y)/(x-y) 右辺の分母分子をxで割る (dy/dx)=-(1+y/x)/(1-y/x) y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx) よって u+x(du/dx)=-(1+u)/(1-u) x(du/dx)=-(1+u)/(1-u) -u x(du/dx)=-(1+u^2)/(1-u) (1-u)du/(1+u^2)=(1/x)dx 両辺を積分というとこの左辺のせきぶんがわかりません。 というかここまでまちがってるかもしれません。 (2) (dy/dx)xy=x^2+y^2 両辺をx^2でわる。 (dy/dx)(y/x)=1+(y/x)^2 y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx)よって u+x(du/dx)=(1+u^2)/u x(du/dx)=(1+u^2)/u -u x(du/dx)=(1/u) udu=(1/x)dx  両辺を積分 (1/2)u^2=logx+C よって(1/2)(y/x)^2=logx+C y^2=2x^2(logx+C) となり、とりあえず答えは合いました。過程はあってますか? あと、最終的な答えの形なんですがy=で答えるとかx=で答えるとか ってありますか?

  • 微分方程式に関する問題です。

    (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3    (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。

  • 微分方程式 1階線形

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4)

  • 同次形微分方程式

    次の問題がわかりません。 次の微分方程式を解け。 (1)(x-y)(dy/dx)=2y (2)dy/dx=y/x+sin(y/x) (1)(x-y)(dy/dx)=2y (dy/dx)=2y/(x-y) 右辺の分母分子をxで割る (dy/dx)=2y/x/(1-y/x) y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=2u/1-u xdu/dx=2u/1-u -u xdu/dx=u+u^2/1-u (1-u)du/(u+u^2)=dx/x 両辺を積分 の左辺の積分がわかりません。それかもっといい方法あったら 教えてください。 (2)y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=u+sinu xdu/dx=sinu du/sinu=dx/x 両辺を積分 の左辺の積分がわかりません。お願いします。

  • 2階微分方程式について(続けての質問ですいません)

    y''=f(y)の一般解の求め方で 両辺に2*y'をかけて、xで積分すると (y')^2 = 2*∫f(y)dy + C_1 になると書いてあるのですが 右辺は求められたんですが左辺がどうしてそうなるのかがわかりません。 自分でやった計算では ∫(y'' * 2*y')dx =∫(y'' * 2*(dy/dx))dx =2*∫(y'')dy =2*y' となってしまいます。 なんとなく間違ってるとは思うのですが 正しい方法がわからないのでアドバイスお願いします。

  • 2階微分方程式の問題について

    下記の微分方程式についての質問です。 k * (d^2 y/dx^2) = a * y^2 …(1) ここで、k, a は定数、(d^2 y/dx^2)はyの2階微分(つまりy'')を表しています。また、* は積を表しています。 この2階微分方程式の一般解を求めたいのですが、詰まっています。 私のやり方は、まず(d^2 y/dx^2)=y'' として k * y'' = a * y^2 …(2) (2)の両辺に2y'をかけて k*y''*2y' = a * y^2 * 2y' これより ( k * (y')^2 )' = ( 2a* (y^3/3) )' 両辺を積分して k * (y')^2 = (2a/3) * y^3 + C1 …(3) (ただしC1は積分定数) このあと、変数分離すればとけるはずなのですが、 その先が詰まっています。 C1があるせいで積分できないのです。 これは一般解が求められないのでしょうか? また、初期条件は x=0でy=y0、x→∞でy=0 なので、x→∞でy'=0 と考えて、(3)よりC1=0 として考えると、 うまく変数分離できて y^(-3/2) dy = √(2a/3k) * dx ∴ y^(-1/2) = (-1/2) * √(2a/3k) *x + C2 (C2は積分定数) ∴ y = ((-1/2) * √(2a/3k) *x + C2)^(-2) …(4) 初期条件より C2 = y0^(-1/2) という感じで解いていったのですが、 どうやら解答は y = p * (x + q)^(-2) ただし、p = 6k/a, q = (a*y0/6k)^(-1/2) となるようです。。。 何度見直してもこうならないのですが、 私の計算ミスでしょうか。。。? (i) 式(3)の一般解 (ii) 式(4)が合っているか に関して、どなたか知恵をお貸しいただければ幸いです。 数式見づらくて恐縮です。

  • 微分方程式

    微分可能な関数f(x)が, ∫[0~x]f(t)dt=x^3-3x^2+x+∫[0~x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0~x]tf(x-t)dt=[-tf(x-t)][0~x]+∫[0~x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0~x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,  du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 微分方程式

    こんにちは。微分方程式についての質問なのですが、 (x^2+1)dy/dx+4xy=4axy^2 をとけという問題で、答えが手元にないので質問させてもらいたいのですが、この問題は ベルヌーイの定理で線形方程式にしたあと、右辺=0と置き左側の一般かいをもとめ、そのあと右の特解をAx+Bとおきその値を求めそれらを足し合わせるという方法であっているのでしょうか?? 自信がないのでどなたかお願いします。

  • 微分方程式

    微分方程式を2問ほど解けません お願いします 1問目 (x+y)y'+x-y=0 y'=((y/x)-1)/(1+(y/x)) y/xをtとおくと y’=t+xt' 以上より (t-1)/(1+t)=t+xt' (t+1)dt/(t^2+1)=-dx/x・・(1) 左辺=-logx+logC まではわかるのですが(1)の右辺が解けません 2問目 y'+2xy-x-x^3=0 y'+2xy=x^3+x 両辺にexp(x^2)をかけて exp(x^2)y=∫(x^3+x)exp(x^3)dx ここまではできたのですが右辺の積分ができません どちらか片方でも良いので教えてもらえると助かります

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。