• ベストアンサー
  • 困ってます

完全形でない3変数関数の微分方程式の解法

全微分方程式A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz=0がある。この式をPとおく。ここで、ベクトル値関数f=[A,B,C]とおき、f・(rotf)=0となるならばPは積分可能でその一般解は下記の手順により求まる。 手順1:Pについてdz=0とすると、Adx+Bdy=0となる。この式をQとおく。これが(∂A/∂y)=(∂B/∂x)を満たすとき、また満たさないときは積分因子μをかけることによりこのQの一般解ξ(x,y,z)=E (Eは定数)が得られる。 手順2:Pの両辺にλをかけたものの一般解を求める。するとλAdx=(∂ξ/∂x)となる。これから、λの値を求める。 手順3:ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzとなり、このうち(∂ξ/∂x)dx+(∂ξ/∂y)dyはλAdx+λBdyとなるが、最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。 dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzと(∂ξ/∂x)dx+(∂ξ/∂y)dy=λAdx+λBdyより、λAdx+λBdy=dξ-(∂ξ/∂z)dzとなる。 するとPの両辺にλをかけた式は、λAdx+λBdy+λCdz=dξ+{λC-(∂ξ/∂z)}dz=0となる。 ここで、λC-(∂ξ/∂z)=ηとおくと、λAdx+λBdy+λCdz=dξ+ηdz=0となり、2変数の全微分方程式dξ+ηdz=0が得られる。この解が結局全微分方程式Pの一般解となる。 ここで質問です。 手順1でdz=0とした式Adx+Bdy=0 (∂A/∂y)=(∂B/∂x)、またはμAdx+μBdy=0 (∂μA/∂y)=(∂μB/∂x)を解くとこの一般解、ξ(x,y,z)=Eが得られ、この関数ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=Adx+Bdy=0、またはdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=μAdx+μBdy=0になるのが分かります。 手順2,3でλAdx+λBdy+λCdz=0という式が出てきますが、これはλをかける事により完全形になっていると思われます。しかしなぜλAdx=(∂ξ/∂x)となるのかが分かりません。ξはAdx+Bdy=0の解として現れる関数なので、λAdx+λBdy+λCdz=0を満たす関数は別にあり、例えばこれをσとすると、この関数の全微分はdσ=(∂σ/∂x)dx+(∂σ/∂y)dy+(∂σ/∂z)dz=λAdx+λBdy+λCdz=0となり、λAdx=(∂σ/∂x)dxとなるのではないのでしょうか? それともこの関数σがξと一致すると仮定しているのでしょうか? それからもう1つ気になるのですが、手順3で「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。」とありますが、これもよく意味が分かりません。なぜ(∂ξ/∂z)dzだけλRdzとはなるか分からないのでしょうか? おそらく私が根本的に間違っていると思いますので、詳しい方教えてください。お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

私も専門家ではありませんので間違いがあるかもしれませんが。そもそも手順が変な気がします…。「手順2:Pの両辺にλをかけたものの一般解を求める」とありますが、これは λ≠0 である限り「Pの一般解を求める」のと等価です。「Pの一般解を求める手順」の中に「Pの一般解を求める」という step が含まれていて堂々巡りです。他にも変な点はあります。λ や R は、一体何なのか定義していないのに、突然既知のものであるかのように登場しています。 今一度手順を確認されてみては如何でしょう。(例えば、抜け・読み飛ばしがないか、ξ (グザイ) と ζ (ゼータ) を混同していないかなど…) 勝手に手順を想像で復元(?)すると: 手順1: q = Adx + Bdy とすると、λq = dξ (dz=0) と積分できる。但し、q が完全形式の場合は λ = 1, それ以外の場合は積分因子 μ が必ず存在して λ = μ. 手順2: dξ = λq + (∂ξ/∂z) dz (dz≠0) である。p = Adx + Bdy + Cdz とすると λp = λq + λCdz = dξ + ηdz, 但し η = λC - (∂ξ/∂z). ここで、別の積分因子 λ_2 を以て λ_2 (dξ + ηdz) = dσ と積分する。ここで λ_2 λ p = dσ = 0 なので、一般解は σ(x,y,z) = F (F は定数). ※注意: f・rot f = 0 を用いると dη = (略) dξ + (∂ξ/∂z) dz、つまり η = η(ξ, z) となる事が示せます。この事によって初めて dξ + η(ξ, z)dz が可積分である事が保証されます。 参考: http://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F%E7%B3%BB%E3%81%AE%E5%8F%AF%E7%A9%8D%E5%88%86%E6%9D%A1%E4%BB%B6

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答していただきありがとうございます。 まず記述ミスについて確認してみたのですが、私のほうで多少文章は変えている以外は本質的には文字も含めて写し間違いはないように見えます。 ご指摘の手順について本当にありがとうございます。 q = Adx + Bdy=0が完全形ならばq=dξとして、完全形でないならば積分因子λ = μをかけてλq=λAdx + λBdy=dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dyとして積分計算することにより解を求めることができますが、この時のdξというのはもともとあった(∂ξ/∂z) dzの項がdz=0のため消えているわけですね。そして元のdξというのを復元するとdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z) dzとなり、この(∂ξ/∂x)dx+(∂ξ/∂y)dyをλAdx + λBdyで置き換えると、λAdx + λBdy=dξ-(∂ξ/∂z) dzという式になります。またλp=λAdx + λBdy + λCdz=0(dz≠0という式)についてλAdx + λBdy=dξ-(∂ξ/∂z) dzを代入すると、λp=dξ + ηdz=0 (λC - (∂ξ/∂z))という関係式ができるので、これが完全形でないときは新たな積分因子を用いて積分して解を求めると、これがλp,またpの解にもなっているわけですね。 とても助かりました!!

その他の回答 (1)

  • 回答No.1
  • trytobe
  • ベストアンサー率36% (3457/9592)

全然わかっていませんが、気になったことだけご参考になれば。 ・P: Adx+Bdy+Cdz=0 の dz=0 のとき、つまり Q の一般解が ξ(x,y,z)=E なので、P の 両辺に λ を掛けた λAdx+λBdy+λCdz=0 のときでも、ξ(x,y,z)=E は解の一つとなり、手順1でも手順2でも ξ(x,y,z)=E が解となることから、これを x について偏微分した (∂ξ/∂x) は Adx のλ倍になってるはず(自信が無い) ・「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明」は、「最後の(∂ξ/∂z)dzだけはλEdz(λξdz)となるかは不明」の写し間違いかと(dz=0の前提でのQの一般解ξ(x,y,z)=E に関する言及のはず)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答していただきありがとうございます。 私の方ももう一度確認してみたのですが、やはり「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明」と記述されているみたいです。

関連するQ&A

  • 全微分方程式の変数分離

    斉次全微分方程式 P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 をzが変数分離された式 P'(u,v)du+Q'(u,v)dv+dz/z=0 となることを示したいのですが、 まずx=uz,y=vzと置くと dx/dz=z*du/dz+u dy/dz=z*dv/dz+v となりますよね。 これを代入して色々やっているのですが、 どうやっても目的の式にもっていくことが出来ません…。 どなたかやりかただけでもお願いします。

  • 微分方程式

    dy/dx = f(y/x) の形の微分方程式で y/x = z すなわち y=xz とおき、未知数関数yからzに変換すると dy/dx = z + x(dz/dx)・・・(1) である。 なぜ(1)の式になるのでしょうか? 教えて下さい。

  • 微分方程式つまらなさすぎる(?)悩み

    (1) dy/dx=f(ax+by+c)のときax+by+c=zとおいて zに関する微分方程式を作れ。 (2) (1)を利用して、微分方程式dy/dx=x+y+1を解け。 この問題について質問があります。まず(1)についてですが、 答えが dz/dx=a+bf(z) でした。私はもっと変形できるのかと 思いずっと悩んでいました。でもこれが答えだったんです。 何をもって”微分方程式”というのでしょうか?また(1)の答えは これ以外にはあり得ないのでしょうか?例えばdxじゃなくてdy が入っていてもいいと思うし、なぜxが選択されたのか不明です。 次に(2)の解説の中で、x+y+1=zとおくと、(1)から dz/dx=1+z・・・(1) 1+z=0 は(1)の解である。・・・ となっていました。なんで1+z=0 が(1)の解になるのでしょうか? これはすなわちdz/dx=0 ということだと思うのですが何をもって この解が導かれたのかさっぱりです。脚注にも説明はありませんでした。 またf(z)がzと表記が変わったことにも違和感を覚えます。 回答よろしくお願いします。

  • 偏微分方程式の解き方

    x(y-z) (∂z/∂x) + y(z-x) (∂z/∂y) = z(x-y) この微分方程式を解く問題で、解答を見ても、理解できない部分があるため、質問させていただきます。 ~解答~ 補助方程式 dx/x(y-z) = dy/y(z-x) = dz/z(x-y) これより、 (1/x)dx / (y-z) = (1/y)dy / (z-x) = (1/z)dz / (x-y) と変形できます。 ここまでは分かるのですが、 これに加比の理を適用すると、 d(logx+logy+logz) / 0 = ((1/x)dx+(1/y)dy+(1/z)dz) / ((y-z)+(z-x)+(x-y)) = (1/x)dx / (y-z) = (1/y)dy / (z-x) = (1/z)dz / (x-y) ↑ここの1つ目のイコールが何故、成り立つのかが理解できません。 d(logx+logy+logz)を計算したら、1/x + 1/y +1/z になってしまわないでしょうか? 逆に、積分してlogになったのだとしても、dが残る理由が理解できません。 よろしくお願いします。 一応、続きも書いておきます。 ここで、d(logx+logy+logz) / 0 より、 d(logx+logy+logz) / 0 = d(logxyz) = 0 よって、logxyz = C' ゆえに、xyz = C (積分定数) このあと、もう1つの解を出して、一般解とします。

  • ベッセルの方程式の問題の解き方が分かりません

     次のベッセルの方程式の問題の解き方が分かりません。  数学に詳しい方、よろしければご教示願えないでしょうか。 問題は、  ベッセルの方程式に帰着できるさまざまな方程式がある。示されている置換を 使って、次の微分方程式の一般解を求めよ。 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 0 (√x = z)  このように解いてみました。  ベッセルの微分方程式は、 x^2*y" + x*y' + (x^2 - ν^2)*y = 0 で、  一般解は、 y(x) = A*Jν(x) + B*Yν(x) ここで、A と Bは任意定数、Jν(x)は第1種ベッセル関数、Yν(x)は第2種ベッセル 関数。 √x = z より、 dz/dx = 1 / (2*√x) y'とy"は、 y' = dy/dx = (dy/dz)*(dz/dx) = (dy/dz)/(2*√x) y" = d^2y/dx^2 = (d/dx)*(dy/dx) = (d/dz)/(2*√x)*(dy/dz)/(2*√x) = (d^2y/dz^2)/(4*x) ゆえに、 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 4*x^2*(d^2y/dz^2)/(4*x) + 4*x*(dy/dz)/(2*√x) + (x - ν^2)*y = x*(d^2y/dz^2) + 2*√x*(dy/dz) + (x - ν^2)*y = z^2*(d^2y/dz^2) + 2*z*(dy/dz) + (z^2 - ν^2)*y = 0 となって、第 2項目が z*(dy/dz) にならず、2*z*(dy/dz) になってしまいます。  本の回答をみると、 A*Jν(√x) + B*Yν(√x) となっているので、問題の微分方程式を、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形したのだと思いますが、どのようにすれば良いのでしょうか ?  同様に下記の問題も、 x^2*y" + x*y' + 4*(x^4 - ν^2)*y = 0 (x^2 = z) 同じ解き方をしたため、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形できませんでした。  なにとぞよろしくお願いします。

  • 偏微分(2変数関数)再質問

    先日偏微分について質問したものです。先日は有難うございました。質問内容に誤りがあったので、再質問させてください。 g(x、y)=0(1)について、両辺をxで微分すると、合成関数の微分法より、gx+gyy‘=0 z=f(x、y)(2)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあります。 (1)についても(2)についても2変数関数なのに、xで偏微分するのではなく、普通にxで微分できるのかがわからないです。また、どうして、(1)gx+gyy‘=0 や(2)dz/dx=fx+fy×(dy/dx)のようにxで微分したらなるのかがわかりません。 いちおう全微分まで、勉強したので、(2)についてはdz=fxdx+fydyをdxで割った形かなと思いましたがよくわかりません。どなたかわかる方教えてください。

  • 2変数関数の2次導関数のことです。

    2回連続微分可能で、z=f(x,y),x=x(t),y=y(t)の関係があって、このときのzのtに関する2次導関数を求めるという問題なんですが、1次の導関数は dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) だと思うんですが、2次の場合は d^2z/dt^2=(d/dt)((∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt)) となって、それぞれの項を積の微分法で解けばいいのでしょうか?できたらその形も教えて下さい。お願いします。

  • 2変数関数の微分法

    g(x、y)=0について、両辺をxで微分すると、合成関数の微分法より、gx+fyy‘=0 z=f(x、y)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあるのですが、どうしてこうなるのかがわかりません。教えてください。

  • 微分方程式の質問です。

    f(y)をyの関数、z=f(y)とおくと f ' (y) dy/dx + f(y)P(x) = Q(x) の式は、 dz/dx + zP(x) = Q(x) と書ける。これを利用して、 dy/dx = (e^-y)(1-x)+1 の一般解を求める問題なのですが、解法が分かりません。 よろしければ教えて頂けないでしょうか。 よろしくお願い致します。

  • 全微分の問題です。合ってるかどうか分かりません。確かめてください。お願いします。

    次の関数の全微分を求めよ。 (1) z=1/(√x^2+y^2) 解:dz=-x/{√(x^2y^2)^3}dx-y/{√(x^2y^2)^3}dy (2) z=tan^-1(x^2+y^2) 解:dz=2x/{(x^2+y^2)^2+1}dx+2y/{(x^2+y^2)^2+1}dy (3) z=exp(1/x^2+y^2) 解:dz=-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dx-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dy