• ベストアンサー
  • 困ってます

2変数関数の2次導関数のことです。

2回連続微分可能で、z=f(x,y),x=x(t),y=y(t)の関係があって、このときのzのtに関する2次導関数を求めるという問題なんですが、1次の導関数は dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) だと思うんですが、2次の場合は d^2z/dt^2=(d/dt)((∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt)) となって、それぞれの項を積の微分法で解けばいいのでしょうか?できたらその形も教えて下さい。お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数284
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • brogie
  • ベストアンサー率33% (131/392)

z=f(x,y),x=x(t),y=y(t)の関係 dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) これは○です。 積の微分です。 d^2z/dt^2=(d/dt)((∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt)) =(∂^2z/∂x^2)(dx/dt)^2+(∂z/∂x)(d^2x/dt^2)+.... というようにしていけばよいでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

今、院試の勉教をしているのですが数学の知識が少ないので、なかなかこれでいいという確信がもてずに困ってました。ありがとうございました。

関連するQ&A

  • 導関数の問題

    y=√{(1-√x)/(1+√x)}の1次導関数と2次導関数を求めよ。 という問題ですが、1次導関数を解いたところ y=√{(1-√x)/(1+√x)}=(1-√x)^1/2*(1+√x)^-1/2として、 y'=-1/4√(x-x^2) -√(1-√x)/{4√(x+x√x)}*1/(1+√x) になりましたが答えはあっているのでしょうか?

  • 指数関数の導関数の公式

     「指数関数 x=e^y は対数関数 y=logx の逆関数だから、逆関数の導関数の公式と対数関数の導関数の公式 dy/dx=1/x を用いるとdx/dy=1/(dy/dx)=1/(1/x)=x=e^yとなり、指数関数の導関数の公式(e^y)'=e^yが得られる、○か×か」という問題がわからないのですが、教えて下さい!

  • 第5次導関数の問題です

    この解き方であっているか、わかる方よろしくお願いします。 関数f(x)=x^5+2mp第5次導関数f^(5)(x)を求めよ。 (f^(5)(x)の(5)の部分だけが指数です。) 答え 1次導関数:5x^4 2次導関数:20x^3 3次導関数:60x^2 4次導関数:120x 5次導関数:120 よって、f^(5)(x)=120

  • 導関数の問題

    以下のような問題を解いてみましたが、自信がありません。 この解き方でいいのでしょうか? もし、おかしい点があればご指導おねがいします。 【問題】 関数 f(x)=∫{0→x}(t^2+1)^10 dt の導関数を求めよ。 【自分の解答】 一般的に、関数g(x)の原始関数をG(x)とした場合、 f(x)=∫{a→x}{g(t)} dt =[G(x)]{a→x}=G(x)-G(a) f(x)=(dG/dx)=g(x) とあらわすことができる。 ゆえに、関数 f(x)=∫{0→x}(t^2+1)^10 dt に t=xを代入し、導関数は f(x)=(t^2+1)^10 となる。

  • 導関数と2次関数について

    よろしくお願いします。  下記の関数についての導関数と2次関数について考え方はあっていますか?

  • 合成関数の導関数についてです。

    {d (x^2)(y^2)}/dy={(x^2)(y^2)}′=(x^2)’(y^2)+(x^2)(y^2)’=0+2y=2y・・(1) と合成関数の導関数についてですが、上の式は合ってますか? (1)は (x^2)(y^2)をyについて微分する(この時y以外の文字は定数扱い)という意味ですか?

  • 公式より導関数を求める

    lim h→0 f(a+h)-f(a)/h の公式より導関数を求めたいと思いますが 計算手順がわからないので、教えてください。宜しくお願いします。 普通に微分したほうが早いのですけど、式を定義にして解こうとすると分かりません。宜しくお願いします。 【問題】 y=1/ x^2 の導関数を求めよ。 

  • 2変数関数の微分法

    g(x、y)=0について、両辺をxで微分すると、合成関数の微分法より、gx+fyy‘=0 z=f(x、y)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあるのですが、どうしてこうなるのかがわかりません。教えてください。

  • 指数が含まれる第5次導関数の問題の解き方

    以下の問題を自分で解答してみましたが、 ぜんぜん自信がありません。 わかる方、いらっしゃいましたらご指導お願いします。 【問題】 関数f(x)=xe^(5x)の第5次(階)導関数f^(5)(x)を求めよ。 【解答】 1次導関数:5e^(4x) 2次導関数:5e^(3x) 3次導関数:5e^(2x) 4次導関数:5e^(1x) 5次導関数:5e^(0)=5・1 よって、f^(5)(x)=5 以上、よろしくお願いします。

  • 陰関数の第2次導関数の証明方法

    陰関数の第2次導関数の証明のやりかたなのですが、 dy/dx=-f(x)/f(y) ですので、 d^2y/dx^2 は d(dx/dy)/dx = d(-f(x)/f(y))/dx となり、後は f(x)/f(y)を微分するだけなのはわかるのですが、 一般的な微分公式にあてはめた場合、 -f(xx)f(y)×f(yx)f(x)/f(y)^2 と成るはずなのですが、 答えは d^2y/dx^2=-( f(xx)f(y)^2-2f(xy)f(x)f(y)+f(yy)f(x)^2 )/ f(y)^3 となり、途中の計算課程が分かりません。 私は何の認識を誤っているのでしょうか? 詳しく教えてください。よろしくお願いします。