• ベストアンサー
  • すぐに回答を!

2変数関数の微分法

g(x、y)=0について、両辺をxで微分すると、合成関数の微分法より、gx+fyy‘=0 z=f(x、y)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあるのですが、どうしてこうなるのかがわかりません。教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数91
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

最初の式のfyはgyの間違いだと思いますが 何が分からないのかわかりません。 df=fxdx+fydy あたりから説明して欲しいという 話なんでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

肝心の部分に誤りがありました。今日もう一度再質問したので、よろしければ教えてください。

関連するQ&A

  • 偏微分(2変数関数)再質問

    先日偏微分について質問したものです。先日は有難うございました。質問内容に誤りがあったので、再質問させてください。 g(x、y)=0(1)について、両辺をxで微分すると、合成関数の微分法より、gx+gyy‘=0 z=f(x、y)(2)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあります。 (1)についても(2)についても2変数関数なのに、xで偏微分するのではなく、普通にxで微分できるのかがわからないです。また、どうして、(1)gx+gyy‘=0 や(2)dz/dx=fx+fy×(dy/dx)のようにxで微分したらなるのかがわかりません。 いちおう全微分まで、勉強したので、(2)についてはdz=fxdx+fydyをdxで割った形かなと思いましたがよくわかりません。どなたかわかる方教えてください。

  • 偏微分、合成関数の微分法

    数学を進めているのですが、偏微分が絡んだ合成関数の微分法がわかりません。 大学数学のテキストは高校のと比べて、読み進めずらいです。助けてください。 (質問本文) 「」は私の理解の仕方と思ってください。まず、公式の理解から私の偏微分の考え方は正しいでしょうか? (1)関数z=f(x、y)にさらにx=x(t)、y=y(t)という関係がある時、「実質1変数で」、dz/dt=(∂z/∂x)×(dx/dt)+(∂z/∂x)×(dx/dt)(「それぞれxとyでzを偏微分して、x、yを今度は1変数なので、微分する」) (2)関数z=f(x、y)にさらにx=x(u,v)、y=y(u,v)という関係がある時,今度は変数が2つuとvがあるので、「どちらか片方で微分して」、∂z/∂u=(∂z/∂x)(∂x/∂u)+(∂z/∂y)(∂z/∂u)(「それぞれ片方の変数x、yでzを微分して(偏微分)さらに、そのx、yを関係式があるuで片方を選んで、uで偏微分する」) 次に、教科書の文章で、f(x、y)=0によって、xの陰関数y=f(x)が定められているとき、y‘=-Fx/Fyをxで微分すると、(dFx/dx)=Fxx+Fyy×dy/dx,dFx/dx=Fyx+Fyy×dy/dx(★)とあるのですが、★の微分はどのように考えて実行しているのでしょうか?(上の教科書の公式では全く上手くいきません)

  • 陰関数の微分法

    陰関数の微分法 方程式(x^2/4)ー(y^2/9)=1で定められるxの関数yについてdy/dx、d^2y/dx^2をxとyで表せ。 (解答) (1)(x^2/4)ー(y^2/9)=1の両辺をxについて微分すると、 2x/4-2y/9×(dy/dx)=0 y≠0のときdy/dx=9x/4y (2)d^2y/dx^2=9/4×{(1×y-xy´)/y^2} (2)についてxを定数として扱ってはならないのはyはxの関数だからと書かれているのですが、 このようにyを定数として扱ってはならないものの例がほかにあれば教えてください。 初心者なので他の例(陰関数の微分法以外の例)を知りません。

その他の回答 (1)

  • 回答No.1
  • yyssaa
  • ベストアンサー率50% (747/1465)

g(x、y)=0について、両辺をxで微分すると、合成関数の微分法より、gx+fyy‘=0 >意味不明。fは何? z=f(x、y)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあるのですが、 どうしてこうなるのかがわかりません。教えてください。 >z=f(x,y(x))をxで偏微分すれば ∂z/∂x=∂f/∂x+(∂f/∂y)*(dy/dx)=fx+fy*(dy/dx)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

誤りがあったので、再質問しました。よろしければ教えてください。皆さん有難うございました。

関連するQ&A

  • 微分法について

    宜しくお願いします。 「微分法」そもそもの意味がわかりません。 というのも、○○で微分する、というのはどう意味かということです。 y=x^2 を「xで微分する」ということと、「yで微分する」ということの違いはなんなのかがわかりません。 xで微分すればもちろんy'=2xなのですが、yで微分するとどうなるのでしょうか。 接線の傾きを表しているという説明は学校で聞きましたし、理解はしましたが本質的な部分がさっぱり理解できておらず、「微分法という操作」ができるだけです。 「微分する」とはどういうことなのか、分かりやすく教えていただければ幸いです。 もともと悩んでいた問題は以下のものです。 yがxの関数で、関係式2x^2+3y^2=6 (y≠0)が成り立つ時、dy/dxを求めよ 回答では d/dx(2x^2)+d/dx(3y^2)=0 4x+6y・dy/dx=0 dy/dx=-2x/3y とありますが、なぜ4x+6y・dy/dx=0のdy/dx部分が残るのかわかりません。 わかりにくく、抽象的な文章で申し訳ありませんが、ご教授お願いいたします。

  • 微分法の入門書

    微分法を学びたいと思ってます。 ”xの関数yをxで微分すると dy/dx である。” というだけでなく、 dx、dy の意味から説明してくれるような 例えば、dz=2xdy+y^2dxの意味が分かるような入門書が あったら教えてください。お願いします。

  • 合成関数の微分法

    大学の問題で次のxの関数z=f(x(t),y(t)についてdz/dtを求めよ とあるのですが解答にも合成関数の微分法としかかかれていないのでまったくわからないです。おしえてください!!

  • 積の微分法と合成関数の微分法の使い分けがわかりません。

    積の微分法と合成関数の微分法の使い分けがわかりません。 どういう時に積の微分法を使いどういう時に合成関数の微分法を使うのですか?

  • 陰関数と偏微分

    1)z^x=y^zで表される陰関数zx,zyを求める上でどうすればいいのか分かりません。 2)以前x^2+y^2+z^2+2x+2y+2z=0で表される陰関数のzxを求めなさいという問題での疑問を出したところz^2をxで偏微分したときに2・z・zx 、y^2をxで偏微分すると0になると返ってきたのですが、どうして0になるのでしょうか? 2y・yxとなるならわかるのですが。またz=の形にしてからという答えもあったのですが、それは(z+1)^2に平方完成してから√にしてやれって事でしょうか?答えがぜんぜんちがったものですから。 3)x^2+y^2+z^2=a^2,x^2+y^2=2ax で陰関数のdy/dx,dz/dxをもとめさせるもんだいがあったのですが、dy/dxをもとめるうえで、fyとfxをもとめたわけなんですが、後の式を使えばでますが、前の式は何に使うのでしょう。dz/dxをもとめるうえで、fz、fxを求めようとしたのですが、fz=2z fy=2yとやってはいけないのですか?しかも答えにはaがでてきました。

  • 全微分を理解する際の質問です。

    全微分は関数z=f ( x , y )に対して dz=fx ( x , y ) dx- fy ( x , y ) dy と表しますが、これをz=f ( x , y )の増分 Δz=f ( x+Δx , y+Δy ) - f ( x ,y ) から導く際の導出について質問です。 このとき、平均値の定理から f ( x+Δx , y+Δy ) - f ( x ,y )=fx ( x+θΔx , y ) Δx- fy ( x , y+φΔy )Δy (ただし、θとφは0<θ<1 , 0<φ<1とする) ここで、Δx→0 , Δy→0すると fx ( x+θΔx , y )=fx ( x , y ) + ε(Δx) , fy ( x , y+φΔy )+ε(Δy) (εは誤差.。カッコの中身は区別のために付けました) なので Δz=fx ( x , y ) Δx- fy ( x , y )Δy +ε( Δx ,Δy ) (ε( Δx ,Δy )=ε(Δx)Δx + ε(Δy)Δyとした) ここで、dzをΔzの近似と考えると Δz=dz + ε( Δx ,Δy ) と表せる。このとき lim[(Δx , Δy)→(0,0)] ε( Δx ,Δy )/√(Δx^2+Δy^2)=0 となっていればよい。 こんな感じのことが書いてあったのですが、どこから √(Δx^2+Δy^2) が出てきて lim[(Δx , Δy)→(0,0)] ε( Δx ,Δy )/√(Δx^2+Δy^2)=0 となれば全微分可能なのでしょうか。 よろしくお願いします。 追伸 先ほど、間違った内容で質問をしました。そちらは自分で間違った認識をして回答者様にもご迷惑をおかけしました。申し訳ありません。また今回も間違ってる可能性がありますので、その際はご指摘いただけると幸いです。よろしくお願いします。

  • 完全形でない3変数関数の微分方程式の解法

    全微分方程式A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz=0がある。この式をPとおく。ここで、ベクトル値関数f=[A,B,C]とおき、f・(rotf)=0となるならばPは積分可能でその一般解は下記の手順により求まる。 手順1:Pについてdz=0とすると、Adx+Bdy=0となる。この式をQとおく。これが(∂A/∂y)=(∂B/∂x)を満たすとき、また満たさないときは積分因子μをかけることによりこのQの一般解ξ(x,y,z)=E (Eは定数)が得られる。 手順2:Pの両辺にλをかけたものの一般解を求める。するとλAdx=(∂ξ/∂x)となる。これから、λの値を求める。 手順3:ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzとなり、このうち(∂ξ/∂x)dx+(∂ξ/∂y)dyはλAdx+λBdyとなるが、最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。 dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzと(∂ξ/∂x)dx+(∂ξ/∂y)dy=λAdx+λBdyより、λAdx+λBdy=dξ-(∂ξ/∂z)dzとなる。 するとPの両辺にλをかけた式は、λAdx+λBdy+λCdz=dξ+{λC-(∂ξ/∂z)}dz=0となる。 ここで、λC-(∂ξ/∂z)=ηとおくと、λAdx+λBdy+λCdz=dξ+ηdz=0となり、2変数の全微分方程式dξ+ηdz=0が得られる。この解が結局全微分方程式Pの一般解となる。 ここで質問です。 手順1でdz=0とした式Adx+Bdy=0 (∂A/∂y)=(∂B/∂x)、またはμAdx+μBdy=0 (∂μA/∂y)=(∂μB/∂x)を解くとこの一般解、ξ(x,y,z)=Eが得られ、この関数ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=Adx+Bdy=0、またはdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=μAdx+μBdy=0になるのが分かります。 手順2,3でλAdx+λBdy+λCdz=0という式が出てきますが、これはλをかける事により完全形になっていると思われます。しかしなぜλAdx=(∂ξ/∂x)となるのかが分かりません。ξはAdx+Bdy=0の解として現れる関数なので、λAdx+λBdy+λCdz=0を満たす関数は別にあり、例えばこれをσとすると、この関数の全微分はdσ=(∂σ/∂x)dx+(∂σ/∂y)dy+(∂σ/∂z)dz=λAdx+λBdy+λCdz=0となり、λAdx=(∂σ/∂x)dxとなるのではないのでしょうか? それともこの関数σがξと一致すると仮定しているのでしょうか? それからもう1つ気になるのですが、手順3で「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。」とありますが、これもよく意味が分かりません。なぜ(∂ξ/∂z)dzだけλRdzとはなるか分からないのでしょうか? おそらく私が根本的に間違っていると思いますので、詳しい方教えてください。お願いします。

  • 数(3)の微分についてです。

    媒介変数で表された関数の微分法についてなのですが、教科書に下のような説明が書いてあります。 x=f(t),y=g(t)と表され、x,yがtについて微分可能のとき 合成関数の微分法により dy/dx=dy/dt*dt/dx ・・・(1) したがって dy/dx=dy/dt*1/dx/dy=dy/dt/dx/dt=g`(t)/f`(t) (1)の合成関数の微分っていうのはyがtで微分できて、tがxで微分できるときに使えるんですよね?てことはyがtの関数で、tはxの関数で無ければならないと思うのですが、最初に与えられているのはyはtの関数、xはtの関数ってことだけで、tはxの関数であるとは限らないと思うのです。なので上の証明はx=f(t)の逆関数が存在する時しか成り立たないのではないのでしょうか?何故いつも成り立つのかがわかりません。 初歩的な質問ですみませんm(__)m

  • 合成関数の微分法について

    合成関数の微分公式について質問です dy/dx = dy/du * du/dx この公式の代数的証明は教科書に載っています。 でもなんかしっくりこないです。形式的に見えます 微分っていうのは接線の傾きを求めることなんですよね この認識のもとに立って、合成関数を幾何的な考え方で 納得したいんです。そうでなくても、公式の本質を少しでも 理解したいです。どなたかご教授お願いします。 不明な点は補足します。おっしゃってください。

  • 合成関数の微分法を使っているようですがわかりません

    「一対一対応の演習・数学III(東京出版)」という問題集の138ページ ■6 定積分の不等式 (ロ) 0<t<1のとき、 ∫(0からt)e^(-x^2)dx>t*∫(0から1)e^(-x^2)dx が成り立つことを示せ。 という問題です。解答は f(t)=∫(0からt)e^(-x^2)dx-t*∫(0から1)e^(-x^2)dx f'(t)=e^(-t^2)-∫(0から1)e^(-x^2)dx よってf''(t)=-2te^(-t^2)<0 (0<x<1)であるから・・・ と続いていくのですが、 合成関数の微分法を使っているらしいことはわかるものの、 それ以外はまったくわかりません。 解説よろしくお願いします。