- ベストアンサー
- すぐに回答を!
二階の全微分について
物理でxyの座標を極座標に変換し加速度を計算するなかで、2階の全微分に困っています。あまり、微分積分は慣れていないので、丁寧に教えていただけると助かります。 http://okwave.jp/qa/q2707943.html でも、同じような質問があります。 一階の全微分はわかりますが、2階の全微分で項が増えるのがわかりません。 具体的には、 Z=f(X,Y), X=g(t) Y=h(t)で、 dZ/dt=(∂Z/∂x)dx/dt+(∂Z/∂y)dy/dt まではよくわかり、これを二階にするときはまず、第1項目(∂Z/∂x)dx/dtが {∂/∂x(∂Z/∂x)dx/dt}dx/dt+{∂/∂y(∂Z/∂x)dx/dt}dy/dt となるだと思うのですが、(∂Z/∂x)d/dt(dx/dt)という項も加わるようです。詳しくその考え方を教えていただけますでしょうか?
- suminori
- お礼率75% (30/40)
- 数学・算数
- 回答数2
- ありがとう数2
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- yokkun831
- ベストアンサー率74% (674/908)
>どう区別して使うんでしょうか? つまり,前者 d/dt{(∂Z/∂x)dx/dt} = d/dt(∂Z/∂x)・dx/dt + (∂Z/∂x)・d/dt(dx/dt) の第2項ですが, ∂Z/∂x はそれ自体がx,yを通じてtの関数なのです。ですからこれをtで微分するにはチェーンルールでまずxで偏微分してdx/dtをかけ,次にyで偏微分してdy/dtをかければよいわけですね?
その他の回答 (1)
- 回答No.1
- yokkun831
- ベストアンサー率74% (674/908)
z=f(x,y) は,x=g(t),y=h(t) を通じてtの関数になるわけです。 したがって,第1項目(∂Z/∂x)dx/dtの微分は d/dt{(∂Z/∂x)dx/dt} = d/dt(∂Z/∂x)・dx/dt + (∂Z/∂x)・d/dt(dx/dt) = ∂/∂x(∂Z/∂x)・(dx/dt)^2 + ∂/∂y(∂Z/∂x)・dx/dt・dy/dt + (∂Z/∂x)・d^2x/dt^2 ということになります。dx/dtもtの関数であることに注意してください。
質問者からの補足
ありがとうございます。少し、近づいた気がしますが、まだ初歩的なところで、十分理解できていません。 一つ目の式の d/dt{(∂Z/∂x)dx/dt} = d/dt(∂Z/∂x)・dx/dt + (∂Z/∂x)・d/dt(dx/dt) は (fg)'=f'g + fg' ということだと思いますが、 後ろで使っている d/dt(∂Z/∂x)・dx/dt = ∂/∂x(∂Z/∂x)・(dx/dt)^2 + ∂/∂y(∂Z/∂x)・dx/dt・dy/dt とはどう区別して使うんでしょうか?(これは全微分の時の式と思います。) カッコを外すと両方とも左辺が同じですので、カッコの使い方など、十分まだ理解できていません。 よろしくお願いいたします。
関連するQ&A
- 偏微分方程式
x^2 (∂z/∂x) + (x^4-xy) (∂z/∂y) = xz + y この問題が解けなくて困っています。 dx/(x^2) = dy/(x^4-xy) = dz/(xz+y) として、 dy/dx = (x^4-xy)/(x^2) = x^2-(y/x) dy/dx + y/x = x^2 に一階線形常微分方程式の公式を適用して、 y = (1/4)x^3 + C(1)(1/x) (C(1)は積分定数) まで解いたのですが、そもそもここまで合ってるかどうかさえ分かりません。 解き方を教えてください。 自分で確認したいので検算の方法もよろしければお願いします。
- 締切済み
- 数学・算数
- 2変数関数の2次導関数のことです。
2回連続微分可能で、z=f(x,y),x=x(t),y=y(t)の関係があって、このときのzのtに関する2次導関数を求めるという問題なんですが、1次の導関数は dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) だと思うんですが、2次の場合は d^2z/dt^2=(d/dt)((∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt)) となって、それぞれの項を積の微分法で解けばいいのでしょうか?できたらその形も教えて下さい。お願いします。
- ベストアンサー
- 数学・算数
- 偏微分
偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。
- 締切済み
- 数学・算数
- 微分方程式の質問です
連立微分方程式の問題です dx/dt=-x+z dy/dt=-2x+y+z dz/dt=x-y+2zの一般解を求めろという問題です。 よろしくお願いします。
- 締切済み
- 数学・算数
- 微分の基本的な質問
今微分について疑問に思ったのですが、 dy/dxって分数みたいに掛けたり割ったりすることが出来るんでしょうか? 例えば dy/dx=x^3/y だとすると両辺にdxをかけたりして ydy=x^3 dx になって ydy-x^3 dx=0 となり完全微分となり、yについて解くみたいなやり方がありますよね? 後、よく教科書で、dy/dt*dt/dx=dy/dxみたいな感じになってるんですが、 例えば y=x^2 と y=t^5 があったとして、 dy/dx=2x dy/dt=t^5 ですよね? dy/dtを分数みたいに(dy/dt)^-1にして dt/dy=(t^5)^-1 で dy/dx*dt/dy をするとdyが消えますから dt/dx=(2x)*(t^5)^-1 =2x/(t^5) となります でも、元の式に帰ると y=x^2 y=t^5 ですから t^5=x^2になって dt/dx=2x/(t^5)=2x/(x^2)=2/x になります。 しかし、最初の式で t=(x^2)^(1/5) というようにしてから微分すると dt/dx=2/5(x^-3/5) になります。 ということはdx/dyを分数として考えると矛盾が起こるんじゃないでしょうか? ということは教科書は間違っているんでしょうか?;; 誰か助けてください!!
- ベストアンサー
- 数学・算数
- ナビエストークスについてです。
ナビエストークについてですが, P(x,y,z:t) q(x+dx,y+dy,z+dz:t+dt) のp-q間のX座標のみの速度変化を求めると (X,Y,Z):(u,v,w)より du=(du/dt)dt+(du/dx)dx+(du/dy)dy+(du/dz)dz となりますよね そこで(du/dt)を求めて, (dx/dt)=u, (dy/dt)=v, (dz/dt)=w になりますよね (du/dt)=(du/dt)+u(du/dx)+v(du/dy)+w(du/dz) となりますよね, 同様にしてy,z成分を求めると X: (du/dt)=(du/dt)+u(du/dx)+v(du/dy)+w(du/dz) Y: (dv/dt)=(dv/dt)+u(dv/dx)+v(dv/dy)+w(dv/dz) Z: (dw/dt)=(dw/dt)+u(dw/dx)+v(dw/dy)+w(dw/dz) ですよね これらをベクトル演算子を用いると対流項は なんで(Vgard)Vになるのですか? V(gradV)ならわからなくもないんですが.
- 締切済み
- 物理学
- 次の連立微分方程式の一般解がわかりません。
次の連立微分方程式の一般解がわかりません。 dx/dt=x-2z dy/dt=2x-y-2z dz/dt=-2x+2y よろしくお願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
ありがとうございます。よく、アドバイスを考えながら計算すると求めていた結果が得られました。非常に助かりました。つい先日も別の質問で助けていただいていたようです。重ねてお礼申し上げます。