• ベストアンサー
  • すぐに回答を!

二階の全微分について

物理でxyの座標を極座標に変換し加速度を計算するなかで、2階の全微分に困っています。あまり、微分積分は慣れていないので、丁寧に教えていただけると助かります。 http://okwave.jp/qa/q2707943.html でも、同じような質問があります。 一階の全微分はわかりますが、2階の全微分で項が増えるのがわかりません。 具体的には、 Z=f(X,Y), X=g(t) Y=h(t)で、 dZ/dt=(∂Z/∂x)dx/dt+(∂Z/∂y)dy/dt まではよくわかり、これを二階にするときはまず、第1項目(∂Z/∂x)dx/dtが {∂/∂x(∂Z/∂x)dx/dt}dx/dt+{∂/∂y(∂Z/∂x)dx/dt}dy/dt となるだと思うのですが、(∂Z/∂x)d/dt(dx/dt)という項も加わるようです。詳しくその考え方を教えていただけますでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数894
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>どう区別して使うんでしょうか? つまり,前者 d/dt{(∂Z/∂x)dx/dt} = d/dt(∂Z/∂x)・dx/dt + (∂Z/∂x)・d/dt(dx/dt) の第2項ですが, ∂Z/∂x はそれ自体がx,yを通じてtの関数なのです。ですからこれをtで微分するにはチェーンルールでまずxで偏微分してdx/dtをかけ,次にyで偏微分してdy/dtをかければよいわけですね?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。よく、アドバイスを考えながら計算すると求めていた結果が得られました。非常に助かりました。つい先日も別の質問で助けていただいていたようです。重ねてお礼申し上げます。

その他の回答 (1)

  • 回答No.1

z=f(x,y) は,x=g(t),y=h(t) を通じてtの関数になるわけです。 したがって,第1項目(∂Z/∂x)dx/dtの微分は d/dt{(∂Z/∂x)dx/dt} = d/dt(∂Z/∂x)・dx/dt + (∂Z/∂x)・d/dt(dx/dt)   = ∂/∂x(∂Z/∂x)・(dx/dt)^2 + ∂/∂y(∂Z/∂x)・dx/dt・dy/dt + (∂Z/∂x)・d^2x/dt^2 ということになります。dx/dtもtの関数であることに注意してください。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ありがとうございます。少し、近づいた気がしますが、まだ初歩的なところで、十分理解できていません。 一つ目の式の d/dt{(∂Z/∂x)dx/dt} = d/dt(∂Z/∂x)・dx/dt + (∂Z/∂x)・d/dt(dx/dt) は (fg)'=f'g + fg' ということだと思いますが、 後ろで使っている d/dt(∂Z/∂x)・dx/dt = ∂/∂x(∂Z/∂x)・(dx/dt)^2 + ∂/∂y(∂Z/∂x)・dx/dt・dy/dt とはどう区別して使うんでしょうか?(これは全微分の時の式と思います。) カッコを外すと両方とも左辺が同じですので、カッコの使い方など、十分まだ理解できていません。 よろしくお願いいたします。

関連するQ&A

  • 全微分の問題です。合ってるかどうか分かりません。確かめてください。お願いします。

    次の関数の全微分を求めよ。 (1) z=1/(√x^2+y^2) 解:dz=-x/{√(x^2y^2)^3}dx-y/{√(x^2y^2)^3}dy (2) z=tan^-1(x^2+y^2) 解:dz=2x/{(x^2+y^2)^2+1}dx+2y/{(x^2+y^2)^2+1}dy (3) z=exp(1/x^2+y^2) 解:dz=-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dx-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dy

  • 全微分について

    全微分公式は dz=∂z/∂y・dy+∂z/∂x・dx ですが、 全微分可能性は、ε(x,y)/(√dx^2+dy^2)→0 ですよね。 全微分可能性は、ちょうど接平面の対角線の高さとΔzの差を、ΔxとΔyを一辺とする長方形の対角線である(√dx^2+dy^2)で割って極限を取るという形になっています。 そうならば、全微分も、Δz/(√Δx^2+Δy^2)であるべきですよね。それが、なぜ上式になるのかわかりません。 僕にはそれぞれの成分が、接平面のxの変化によるzの増分とy方向の変化によるzの増分を足すと、zの増分になるとしか意味しておらず、 微分の微分係数を求めるつまり、平均変化率の極限値になっていないと思うのですが・・・ 確か、dy/dx=接戦の傾きで、上式では単に成り立つよねとしか言えていないような・・・・

  • 全微分について

    いつもお世話になっております. この度は次の2つの問題に関して質問させていただきます. 問1 次の連立方程式の全微分をとり,dy/dxを求めなさい. zf(x)+(1-z)g(z)=0 z=yx 問2 方程式ye^(2x)=10について-dy/dxとd/dx(-dy/dx)を求めなさい. 問1に関しては,f(x)とg(z)が与えられていない状況でどう考えて良いのかが全くわかりません.yxf(x)+(1-yx)g(z)=0として全微分すればよいのでしょうか?もしそうだとするならば計算が煩雑になるので,他によい解き方はありませんでしょうか? 問2は全微分を行うと,2ye^(2x)dx+e^(2x)dy=0となり,-dy/dx=2yと求められました.しかし,与式をはじめにy=10e^(-2x)と変形してから微分すると-dy/dx=20e^(-2x)となりました.どうして同じ-dy/dxであるにも関わらず答えが違うのでしょうか? 以上2点,よろしくお願い致します.

  • 偏微分

    偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。

  • ODE > 全微分

    全微分とは何かについて質問したいと思います。 読んでいたweb上の資料では以下の記載がありました。 ----- P(x,y)dx + Q(x,y)dy の微分形式が2変数f(x,y)の全微分になっているとき、すなわち df = ∂f(x,y)/∂x(x,y) dx + ∂f(x,y)/∂y dy = P(x,y)dx + Q(x,y)dy ----- 質問ですが、「全微分でない」というのは、ようするにf()という関数が別の変数(例えばz)に従属していて、fの微分をとった時にzの偏微分も入れないといけない、というようなことでしょうか?

  • 全微分と接平面について

    二つ質問があります 全微分をdz=Zxdx+Zydy、接平面をZ-c=Zx(x,y)(x-a)+Zy(x,y)(y-b)と習ったのですが 微分は傾きを求められるということで、全微分は接平面の傾きを求められるということですよね? というのが一つで、またもう一つは 上のことが正しい場合、dx,dyは接平面の公式では見当たりません。どうなったのでしょうか というのが二つ目です。 伝わりにくい文章になってしまいましたが、よろしくお願いします

  • 全微分の式

    2変数関数F(X,Y)の全微分dF(X,Y)について、dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYが成立するのを証明していただけませんか? 講義だと、Xがaからh、Yがbからkに移動するときの平均変化率が、[F(X+a, Y+b)-F(X,Y)]/(h+k)^2みたいに書かれていて(すいません、書き間違えているかもしれません・・・うろ覚えなので)、どうして分子が(h+k)^2なのか分からないのです・・・。なお、上のdF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYは、微分の公式としてよく出てくる(XY)'=X'Y+Y'Xと同じ物ですか?

  • 逆関数の微分と全微分の違い

    「y=1+x*c^yで定まる陰関数yについてdy/dxを求めよ」という問題の 解き方で、逆関数の微分と全微分のどちらで解けばよいのか分かりません。 私は、f(x,y)=1+x*c^y-y=0とおき、dy/dx=df(x,y)/dx*1/{df(x,y)/dy}で解き dy/dx=c^y/{x*c^y-1}となったのですが、 全微分の解き方をすると、c^y*dx+{x*c^y-1}*dy=0より dy/dx=-c^y/{x*c^y-1}となり、私が出した答えと符合が逆になってしまいます。 この場合どちらの解き方で解けばよいのでしょうか? 見づらいとは思いますが、どうかよろしくお願いいたします。

  • 全微分に関して教えてください。

    全微分に関して教えてください。 教科書には、 まず、1階微分方程式:dy/dx=-p(x,y)/q(x,y)が定義され、 p(x,y)dx+q(x,y)dy=0・・・(1) と変形した形が書かれています。 そして、完全形の条件が書かれています。 そこで、(1)が完全形であるための必要十分条件は、 ∂p(x,y)/∂y=∂q(x,y)/∂xと書かれ、 証明が始まるのですが、 [必要条件] pdx+qdyが関数uの全微分であるならば、du=∂u/∂x dx+∂u/∂y dy=pdx+qdy よって、p=∂u/∂x、q=∂u/∂yであり、 ∂p/∂y=∂^2u/∂y∂x=∂^2u∂x∂y=∂q/∂x [十分条件] ∂p/∂y=∂q/∂xとしたとき、 F(x,y)=∫p(x,y)dx・・・(2)とおくと、 p(x,y)=∂F/∂x, ∂q/∂x=∂p/∂y=∂^2F/∂x∂y・・・(3) であるから、∂/∂x(q-∂F/∂y)=0・・・(4) すなわち、q-∂F/∂y・・・(5) はyだけの関数である。 q-∂F/∂y=G(y)・・・(6) よって、 u(x,y)≡∫q(x,y)dy=F(x,y)+∫G(y)dx・・・(7) とおけば、 ∂u/∂y=q(x,y)、∂u/∂x=∂F/∂x=p(x,y) であるから、 du=∂u/∂x dx+∂u/∂y dy=p(x,y)dx+q(x,y)dy・・・(8) となり、証明終了となっております。 必要条件に関しては分かるのですが、 十分条件に関しての証明がよく分かりません。 I、(2)とおく理由 II、(4)となる理由 III、(5)がyだけの関数という意味 IV、その結果、(7)となった過程 上記のI~IVに関して教えていただけませんでしょうか 長々と申し訳ありません。 どうしても理解したいので、 どなたか、教えていただけませんか。 宜しくお願いいたします。 ※数式に関しては、何度か確認したのですが、 間違っていたらご指摘ください。

  • ラグランジュの未定乗数法

    条件g(x,y)=0の下で、z=f(x,y)の極値を求める。 g(x,y)=0は、xとyの陰関数でありz軸に平行なある曲面を表す。 z=f(x,y)の全微分は、dz=(∂f/∂x)*dx+(∂f/∂y)*dyより、(dz/dx)=(∂f/∂x)*1+(∂f/∂y)*(dy/dx) dz/dx=f_x(x,y)+f_y(x,y)*(dy/dx) ここでzは、g(x,y)=0の条件によりxの1変数関数となっている。 一方、z=g(x,y)とすると、z=g(x,y)=0となり、これは恒等的に0である。よって、全微分もdz=(g_x)*dx+(g_y)*dy=0となる。 dy/dx=-g_x(x,y)/g_y(x,y) dz/dx=f_x(x,y)-[{f_y(x,y)*g_x(x,y)}/g_y(x,y)] (x,y)=(a,b)の点で、この曲線が極値をもつとき、dz/dx=0となる。 dz/dx=f_x(a,b)-[{f_y(a,b)*g_x(a,b)}/g_y(a,b)] f_x(a,b)={f_y(a,b)*g_x(a,b)}/g_y(a,b) g_x(a,b)≠0のとき、両辺をg_x(a,b)で割り、{f_x(a,b)/g_x(a,b)}={f_y(a,b)/g_y(a,b)} ここで、{f_x(a,b)/g_x(a,b)}={f_y(a,b)/g_y(a,b)} =λとおくと、f_x(a,b)=λ*{g_x(a,b)}, f_y(a,b)=λ*g_y(a,b) このλが未定乗数である。 質問がいくつかあります。 まず、初めに条件になっている『g(x,y)=0はz軸に平行な曲面を表す』とあります。これは、z=g(x,y)=0とは違いますよね? z=g(x,y)=0はz=0なので、xy平面上の関数になり、z軸に平行な曲面にはならないと思うのですが。 次に、全微分可能な関数z=f(x,y)の全微分はdz=f_x(x,y)dx+f_y(x,y)dyと表され、これは∂z/∂x=f_x(x,y)+f_y(x,y*)(dy/dx)と表す事ができ、この左辺はzがxとyの2変数関数のためdz/dxとならずに∂z/∂xとなっています。この証明においてz=f(x,y)の全微分を求める際に『ここで、zはg(x,y)=0の条件により、xの1変数関数となっている』とありますが、これはどういう意味でですか? z=f(x,y)の曲面とg(x,y)=0の曲面が交わった所は曲線になるのは分かります。そしてこの曲線はxの値を一個定めると、それによってyの値が決まるので、zも決まる。よってzはxの1変数関数となるのでしょうか? そして、『z=g(x,y)とおくと、z=g(x,y)=0とおくと、これは恒等的に0。よって、その全微分もdz=(g_x)*dx+(g_y)*dy=0』とありますが、まずこの意味を簡単に説明していただけますか。『よって』の前後がどう繋がっているのが分かりません。『z=g(x,y)=0とおく』となっていますが、この場合z=g(x,y)=0は前述したようにxy平面上のグラフになると思うのですが、なぜg(x,y)=0をz=g(x,y)=0と置き換えたのかが分かりません。dy/dxの値を求めるためでしょうか? 自分の書いた所に、誤解やちんぷんかんぷんで意味が分からない所があれば指摘してください。